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Abstract
Four GAN-based I2I translation techniques for unpaired data are
employed for the synthesis of biometric finger vein presentation
attack instrument (PAI) samples corresponding to three public pre-
sentation attack datasets. These synthetic samples are used to train
presentation attack detectors (PAD) using distinct feature sets in
their classifier. We aim to assess the usefulness of these synthetic
data for augmenting PAI datasets, and our analysis reveals that
CycleGAN generated PAI samples are best suited to train PAD
while DRIT generated data are hardly suited at all. This result cor-
responds well to visual appearance and quality measures of the
synthetic PAI samples. However, it turns out that different types
of features used in PAD can lead to very different behaviour of the
PAD system trained with synthetic data. For example, Fourier or
LBP feature sets must not be used as these respond more to the
embedded GAN model fingerprints than to visual similarity of syn-
thetic and real PAI samples. On the other hand, pre-trained neural
network features, Haralick features, and surprisingly, also simple
features like histograms or localised variance and entropy can be
used in the PAD system and lead to stable PAI sample detection
results across all datasets and GAN-types (except DRIT) considered.
Consequently, results indicate which synthesis technique / feature
extraction scheme combinations should be considered when aug-
menting real PAI samples with synthetic ones in PAD training, and
which combinations should be avoided.

CCS Concepts
• Computing methodologies → Biometrics; Reconstruction;
• Security and privacy→ Biometrics.
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1 Introduction
Presentation attacks (PA) are conducted by either presenting arte-
facts mimicking real biometric traits (aka “presentation attack in-
strument” (PAI)) to the biometric sensor to be deceived or by replay-
ing earlier captured biometric sample data on some suited device,
thus also attempting to deceive the sensor (“replay attack”). In
this work we consider the former attack employing PAIs mounted
against finger vein recognition systems. Counter-measures to these
types of attacks have of course already been developed and are
termed “presentation-attack detection (PAD)” or “anti-spoofing”
measures [18]. A comprehensive overview of PAD techniques for
vascular data can be found in table 14.1 in [15]. More recent exam-
ples are e.g. [23, 24] where a targeted fusion of recognition scheme
results is used for PAD and [27] where a customised CNN is trained
to detect PAI samples. Also, liveness detection measures can be
used against PA, typically by analysing near-infrared videos (in the
spectral domain of dorsal hand vein videos [26] or by applying a
light vision transformer approach in the Gabor domain of finger
vein videos [2]).

The last decade has brought forward several publications that
presented multiple ways to potentially fool finger vein-based au-
thentication systems. In first attempts, vascular PAIs are generated
as easily as printing a previously captured finger vein sample image
on a piece of paper or on overhead projector foil and presenting this
printout (eventually manually enhanced) to the sensor (see [21] for
a review on these techniques). Current public datasets containing
PAI sample data are based on this approach while more advanced
techniques involving smartphone displays [21] or modelling finger
properties using silicone or beeswax [25] have been developed.
Obviously, the generation of PAI samples is tedious work: Generat-
ing printouts (manually enhanced) or physical models (in various
materials, typically with attached printed vascular structures) and
subsequent scanning with a target sensor is required to generate
the forged sample data. As a consequence, available PAI sample
datasets are of moderate size at best [23] which endangers a statisti-
cally relevant assessment of associated security risks. Experimental
results in this work confirm this problem: For the most challenging
dataset, obtained “BaseLine” results using real PAI samples only are
hardly suited for usage in practice (see Experimental Results sec-
tion), underpinning the need for additional training data. Note that
PAI samples are used for two purposes mainly: First, to evaluate
the threat posed by such artefacts used in a PA against a particular
recognition scheme (vulnerability assessment), and second, to train
PAD techniques designed for securing the biometric system [18].

In this work, we focus on the second application case, i.e. train-
ing PAD techniques using synthetic data. However, we employ
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synthetically generated PAI samples created to conduct vulnera-
bility assessment earlier [29]: Based on real PAI sample data of
three finger vein spoofing datasets we synthesise PAI samples from
given real bona fide sample data, which is done by training several
different image-to-image (I2I) translation GAN structures. When
doing so, the following question arises: Are these synthetic PAI
samples fit to be used in both, vulnerability assessment as well as
PAD training, i.e. is a dual use of those PAI samples sensible, or do
we need to synthesize PAI samples for these two tasks separately ?
Besides assessing these synthesised PAI samples in terms of subjec-
tive quality and dataset distribution similarity to real PAI sample
data (results are taken from previous work [29]), we evaluate the
synthetic data in terms of PAD accuracy when used to train a PAD
system to discriminate bona fide from real PAI samples, respec-
tively (this is the main objective of this work). Note, that it is not
the aim of this work to show that we can improve PAD system
accuracy by using synthetic PAI samples. In fact, this work inves-
tigates the effects when replacing existing, real PAI samples with
the synthetic ones in a PAD system entirely. This setup has been
chosen to enable the best-possible and most-accurate comparison
setup as the PAI samples used in the comparison (real and synthetic
ones) are constructed to even originate from the same bona fide
samples. Of course, a realistic PAD system deploying synthetic PAI
samples would act differently by augmenting real PAI samples by
synthetic ones (instead of replacing them as in our experiments).
Our evaluation setup using the synthetic PAI samples only instead
of the real ones does not make sense in a real-world system as one
could use the real PAI samples right away. In a realistic setting, a
model trained to generate synthetic PAI samples would be applied
to bona fide samples for which no real PAI samples do exist, to
enlarge the training set of the classifier (corresponding evaluations
will be done in subsequent work).

The rest of this manuscript is organised as follows: Section 2
describes related work including the selection of suited network
architectures for the task at hand. In Section 3 we define the experi-
mental settings with respect to dataset and used evaluation metrics,
experimental results are presented in Section 4. The conclusion and
outlook to future work is given in Section 5.

2 (Deep-Learning based) Synthesis of PAI
Samples

The concept of Generative Adversarial Networks (GANs [11]) was
first introduced by [5] and has become very popular and is also
used in a variety of different modified versions. Image to Image
Translation (I2I) aims to translate an image from a source domain to
a target domain. While during this translation the source content
should be preserved, the target style should be transferred to the
input image IX . For this I2I task, GANs, in the most imaginable
variations, have turned out to be a very good solution [10]. In this
work, the source domain are the finger vein images from a specific
database and the target domain are themanually created PAI sample
images generated by the sensor, which are used to evaluate the
presentation attack (PA). Thus, we clearly have an unsupervised
2-domain I2I translation task to solve, in order to supersede the
physical construction of presentation attack instruments and their
subsequent biometric imaging.

A recent survey on synthetic biometric data [17] reveals, that
synthetic generation of vascular data, in particular finger vein sam-
ples, has hardly been addressed before. One of the few exceptions
is [13], where it was shown that it is indeed possible to gener-
ate grey-scale vascular samples (finger vein as well as hand vein
data) from corresponding binary features using a learning-based
approach (template inversion). An entirely different way for fin-
ger vein sample synthesis, using on a model-based approach, has
been demonstrated in [9]. Another excellent survey on various
aspects of synthetic data (including biometric traits) is presented
in [12], confirming the impression that learning-based synthesis
of vascular sample data is in its infancy. Still, there are a few fur-
ther examples employing generative AI techniques: [30] proposed
a GAN-based synthesis of a finger vein sample dataset based on
the prior generation of a vein pattern image, thus related to both
[9] and [13], while [33] applied an end-to-end GAN-based sample
generation where the samples are used to augment the training set
in deep-learning based finger vein recognition. Similarly, also [31]
applies a (Cycle)-GAN-based finger vein sample synthesis approach
to improve recognition.

Finally, targeting the synthesis of actual PAI samples, a “Spoof-
GAN” has been proposed [7] for fingerprint generation, serving the
same purpose as the data generated in this work. A different way
to increase the amount of training data for PAD network training is
chosen in [19], where usual (non PAI) synthetic fingerprint samples
are used for this purpose besides classical PAI samples.

Most similar to this work is [29]. Finger vein PAI samples have
been synthesised after training well-known GANs with data from
public PAI sample datasets. However, in this paper the synthetic
data is evaluated for its appropriateness to conduct a vulnerability
assessment, while here, we evaluate the synthetic data for its ap-
propriateness to train a PAD system to discriminate bona fide from
real PAI samples, respectively. Note that for vulnerability assess-
ment, synthetic samples need to be suited for impersonation (i.e.
synthetic PAI samples are confused with real samples of a person
enrolled in a database by the recognition approach used by the
biometric system), while for PAD training, synthetic PAI samples
“only” need to look / behave similar to real PAI samples according
to the employed PAD classifiers’ perspective. Results of this study
will shed light on the question if PAI samples generated earlier for
vulnerability assessment may also be properly employed for PAD
training. This would be of advantage of course, as a separate gener-
ation of PAD samples for the two different usage scenarios would
become obsolete and single datasets with dual usage potential could
be made available.

Following [29], the following I2I networks are applied in our
task: CycleGAN [34], DistanceGAN [1], DRIT [16], and StarGANv2
[3]. As in [29], we use the network implementations made avail-
able by the authors of the original papers, samples are fed into the
networks in full size and slightly resized according to the networks
need using bicubic (e.g. CycleGAN) or bilinear (e.g. DistanceGAN)
interpolation. Augmentations are done within the network as sup-
ported, without any additional external augmentation.

Data synthesis is done in a five-fold cross validation, i.e. for each
configuration, five different network instances have been trained
from scratch to generate their share of the final data. Fold construc-
tion prevents to have distinct samples of a single subject in both
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the training and evaluation sets, respectively (thus we separate sub-
jects in training and evaluation data). The detailed description of
which parameters have been used for each network can be retrieved
from https://wavelab.at/sources/Vorderleitner23b/ upon publica-
tion, based on which the synthetic data can be reproduced.

3 Experimental Settings
3.1 Datasets
The Idiap Research Institute VERA Fingervein Database (VERA)
[28] consists of 220 unique fingers captured in 2 sessions from 110
subjects. Each sample has one PAI sample counterpart, which is
generated by printing preprocessed samples on high quality paper
using a laser printer and enhancing vein contours with a black
whiteboard marker afterwards. Images come as full (250×665 pixels)
or cropped (150×565 pixels) samples.

The South China University of Technology Finger Vein Database
(SCUT) [20] was collected from 6 fingers of 100 subjects captured
in 6 acquisition sessions. For PAI sample generation, each finger
vein image is printed on two overhead projector films which are
aligned and stacked. In order to reduce overexposure, additionally
a strong white paper is put in-between the two overhead projector
films. Images come as full (640×288 pixels) or cropped samples of
variable size.

The Paris Lodron University of Salzburg Finger Vein Spoofing
Data Set (PLUS) [25] uses a subset of the PLUS Vein-FV3 dataset as
bona fide samples. For PAI sample generation, principle curvature
(PC [14]) binarised vein structures from 6 fingers of 22 subjects
were printed on paper and sandwiched into a top and bottom made
of beeswax. Capturing is done employing two illumination variants
(LED and Laser) and using two different levels of vessel thickness.
Every sample is of size 192×736 pixels.

In Fig. 1 we display a pair of bona fide and PAI sample images,
respectively, from each of the considered datasets. Note that for
PLUS data, the two samples look rather differently (so a PAD de-
tector should have an easy job to do), while for VERA and SCUT
similarity is much higher, while the PAI samples look much more
blurred (and additionally exhibit larger areas of overexposure in
case of VERA).

(a)

(b)

(c)

Figure 1: A pair of bona fide and real PAI sample images,
respectively, from the (a) VERA (b) SCUT, and (c) PLUS
datasets.

Note that for each available real PAI sample as contained in
the datasets, we have generated the corresponding synthetic PAI
sample per generation method (to enable a systematic comparison
of real and synthetic samples per instance, respectively).

3.2 Evaluation Methodology
In order to evaluate synthetic visual data, there are several options
that can be taken. In any case, we need to keep in mind that the
current aim is not to generate “better” data, but to generate data
as close as possible to natural (real-world) data. The generation of
datasets with custom properties, possibly different from the real
data, represents a second stage in the development of such synthetic
data.

There is a plethora of techniques to assess visual data, most
of the techniques focus on some kind of quality aspect (image
quality metrics IQM), and among those, many try to model human
perception. This is not exactly our aim as our priority is to generate
data which behaves equally to real data when it comes to assess the
PA resistance of a finger vein biometric system. Although biometric
image quality evaluation algorithms have increasingly been applied
in fingerprint, face or iris biometric recognition procedures in recent
years, the ISO/IEC 29794:2016 Biometric Sample Quality standard
does not yet include a quality evaluation criterion for vein samples
[22], while it does for the modalities mentioned before.

As outlined in the Introduction, we aim to assess the effective-
ness of synthesised PAI samples in simulating PAD training with
these data, as opposed to a simulated PA (vulnerability assessment)
as conducted in earlier work on these data [29]. We incorporate
existing quality assessment of these synthetic data [29] for the sake
of comparison: We include (i) a subjective visual assessment of the
correspondence to real-world data (opinion score OS), which is av-
eraged over all samples and uses the same range and interpretation
of values as the mean opinion score MOS (five-point, fixed-choice
Likert-scale: 1 - good correspondence, 5 - bad correspondence) and
(ii) an objective measure of the similarity of visual data considering
entire corpora of imagery, the Fréchet Inception Distance (FID) [8].
For both metrics, smaller values indicated better correspondence
to the real PAI sample data.

For the performance assessment in PAD training, we train kNN
(k-nearest neighbour) classifiers to facilitate straightforward ap-
plicability for all feature sets considered (see below, except for
FscratchNN). Note that kNN is chosen to concentrate the attention
to the effects of the different feature extraction schemes, which
is done most effectively using the kNN as it does not really learn
but only memorizes the training-set and selects classification re-
sults based on feature vector proximity. For “BaseLine” results,
we train the classifier to discriminate between bona fide and real
PAI samples as provided by the datasets. For assessing the syn-
thetic data, we train the classifier to discriminate between bona
fide and synthetic PAI samples, respectively. As the aim is to con-
duct “real” PAD, in both cases we test the ability of the resulting
classifier to discriminate between bona fide and real PAI samples.
Thus, while the testing is done in the same manner (considering
real-life application), the training is different according to what we
mean to determine. As the available datasets are rather limited in
size, we apply the leave-one-out cross validation protocol (for the

https://wavelab.at/sources/Vorderleitner23b/
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non-learning-based features) and a five-fold cross validation for the
learning based ones.

To evaluate the effectiveness of the proposed PAD approach, re-
sults are reported in compliance with ISO/IEC 30107-3:2017. Since
a presentation attack detection mechanism is a binary classifier,
four outcomes are possible: correctly classified as attack (true posi-
tives TP), wrongly classified as attack (false positive FP), correctly
classified as bona fide (true negative TN) and wrongly classified as
bona fide (false negative FN). According to the standard, we report
Attack Presentation Classification Error Rate (APCER - proportion
of attack presentations incorrectly classified as bona fide presenta-
tions), Bona Fide Presentation Classification Error Rate (BPCER -
proportion of bona fide presentations incorrectly classified as pre-
sentation attacks), and Average Classification Error Rate (ACER =
(APCER + BPCER) / 2) as follows:

APCER =
FN

FN +TP
, BPCER =

FP

FP +TN
.

The features employed as described in the following subsections
have been selected as these have often been used to characterize
textured content. As the texture of tissue and vessels seems to
vary significantly when comparing bona fide and PAI samples,
respectively, texture-oriented descriptors constitute a natural choice
for the task at hand. In addition, some generic visual descriptors
have been selected.

3.2.1 Classical Features. Grey-value histograms are formed using
10 equally sized bins, k in the kNN is set to 3 and Euclidean dis-
tance is used to compare histograms. For the variance (entropy)
feature-vector, the samples are cut into 40×40 (50×50) pixels blocks
for each of which the variance (entropy) is computed (k is set to
3 (5), Euclidean distance is used to compare feature-vectors). For
the fractal dimension feature vector, the samples are binarised with
9 uniformly distributed thresholds across the grey-value range
and box-counting fractal dimension is computed resulting in 9-
component vectors which are compared by Euclidean distance (k
in kNN is set to 3 (SCUT), 5 (VERA), and 7 (PLUS)). For the Haral-
ick feature vector, the underlying grey-level co-occurrence matrix
(GLCM) considers not a single direction but all directions combined
(i.e. number of neighbouring pixels per grey-value combination) at
a certain distance. k is set to 9, while GLCM distance d as well as
Haralick feature H used are found in parameter optimisation: VERA:
d=2, H=3, SCUT: d=3, H=3 & 12, PLUS: d=1, H=9. Feature vectors
are compared by Euclidean distance. The Local Binary Pattern (LBP)
feature vector is obtained by using uniform LBP with radii 1 and
2 (two histograms concatenated which are compared using the
Wasserstein distance) and setting k in the kNN to 7. Binary Statisti-
cal Image Features (BSIF) uses filters learned by ICA, however, we
have used filters pre-trained on iris data1. Responses of the 10 11×11
pixel filters are mean-binarised, flattened and Hamming distance is
used for comparison. k is set to 5, some configurations of dataset
and GAN-type provide slightly better results for other k-values.
The Fourier feature vector consists of the energy of Fourier coef-
ficients computed from 30 equally-spaced band pass filters, again
compared by Euclidean distance. Unless noted otherwise, all 30

1https://github.com/CVRL/domain-specific-BSIF-for-iris-recognition

bands are used, and best results are observed for k between 10 and
25 (variations are small for k larger than 5 though).

3.2.2 Learning-based Features. DenseSIFT and DenseHOG features
vectors are obtained by a Bag-of-Visual-Words (BOW) approach ap-
plied to a set of keypoints computed on centers of 3×3 pixel blocks.
The keypoint descriptors computed on this regular (“dense”) grid
are k-means clustered and the clusters form the bin-centers of the
histograms describing any new image. The k in the kNN classifier
is optimised for each dataset and GAN, k in k-means clustering has
been found to perform well at k=9 (SIFT) and K=11 (HOG), resulting
in 9-bin and 13-bin histograms which are compared by Euclidean
distance. TransferNN denotes using the EfficientNet-B0 in transfer-
learning mode, i.e. it is used as a pre-trained (on ImageNet data)
feature extractor, from which the activations of the last layer are fed
into the kNN, using k=5 and comparing vectors using Euclidean dis-
tance. Finally, FscratchNN denotes a small custom network, trained
from scratch (i.e. random weight initialisation) on our data. The ar-
chitecture is extremely shallow, consisting of a single convolutional
layer with ReLU activation and subsequent MaxPooling layer. Next,
a flatten layer prepares the data to be input into a Dense layer again
with ReLU activation before resorting to the Output layer (with a
sigmoid activation function). Adam optimisation is employed, the
loss function used is BinaryCrossentropy.

4 Experimental Results
For each of the three datasets and the four GAN-types, we present a
visual example of a synthetic PAI sample for qualitative analysis in
Fig. 2. When comparing to Fig. 1, we observe that the PAI samples
from the SCUT dataset are difficult to synthesise properly, as except
for the CycleGAN result, the samples lack in clear vascular structure.
The DRIT data look rather disappointing overall, as even the PLUS
data clearly lack in detail (which is rather prominent and much
better generated by the other GAN-types).

(a)

(b)

(c)

(d)
VERA SCUT PLUS

Figure 2: Example synthetic PAI sample images: (a) Cycle-
GAN (b) DistanceGAN (c) StarGANv2 (d) DRIT

In Table 1 we present the quantitative results of our assessment
for data generated from the VERA dataset. In terms of FID and OS,
the numerical values clearly favour DistanceGAN over DRIT, thus
confirming the visual impression. StarGANv2 shows even better
values in that respect, while CycleGAN surprisingly exhibits the
worst FID value and OS close to DRIT, contradicting the visual
quality. In the subsequent lines of Table 1, we report results of

https://github.com/CVRL/domain-specific-BSIF-for-iris-recognition
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PAD detector performance, considering BaseLine results as well
as results obtained using synthetic PAI samples in PAD training.
Error rates have been rounded to integer in all subsequent result
tables as (i) we present a significant number of numerical results
and decimal figures might cloud the major message conveyed, and
(ii) for several feature types we already present an error-range due
to different parameter settings, such that too much detail in single
number results would not make much sense. Note that in increasing
darkness of gray levels, we emphasise decreasing PAD accuracy
- i.e., the darker, the worse (medium gray for ACER between 21%
and 40% and dark grey above 40%, respectively). Also note that
for the SCUT and PLUS datasets, experiments are conducted on
multiple instances of synthetic data differing by minor parameter
variations in the synthesis process (see https://wavelab.at/sources/
Vorderleitner23b/ for details), also FscratchNN experiments are
repeated with varying random initialisations for all datasets. If
these experiments cause variations in classification accuracy, a
range is given instead of a single value. In section 4.1 a single result
from this range is further detailed for illustrative purposes.

Table 1: VERA - Quantitative results: FID, OS, and ACER
(BaseLine and training with four variants of GAN synthe-
sised PAI samples).

BaseLine CycleGAN DistanceGAN StarGANv2 DRIT
FID OS FID OS FID OS FID OS
189 3.0 28 2.5 24 2.0 106 3.5

Method ACER [%] ACER [%] ACER [%] ACER [%] ACER [%]
Histogram 1 4 2 2 12
Variance 3 4 2 2 3
Entropy 1 1 0 1 2
FactDim 2 35 25 30 40
Haralick 0 8 0 1 0
LBP 4 29 50 50 50
BSIF 0 28 32 1 4

Fourier 7 50 50 50 50
DenseSIFT 1 3 2 2 13
DenseHOG 0 5 3 2 17
TransferNN 1 3 3 3 3
FscratchNN 2 46-53 68-62 24-27 60-64

First of all, it is evident that all used feature sets can be used
to train a PAD system using real data, as the “BaseLine” column
exhibits fairly low ACER values. Furthermore, PAD training using
the synthetic data set is feasible in principle (excellent results for
all GAN-types using e.g. Entropy, Variance, Haralick, and Trans-
ferNN), however, it is also evident that the success of this approach
is dependent on the feature set employed (random-guessing like
results for all GAN-types using LBP, Fourier, and FscratchNN). Also,
not all GAN-types are equally useful, in particular we see DRIT
with the worst results while the other three are about en par, with
StarGAN in the lead. So it seems, that visual appearance is more
reliable for predicting PAD training performance than quantitative
measures of quality.

Subsequently, we discuss quantitative results obtained on the
SCUT dataset which are shown in Table 2. Comparing the different
GAN-types in terms of FID and OS, the visual impression is numer-
ically confirmed. Only CycleGAN exhibits low values (indicating
good quality), whereas the other three GANs lead to high values
(only SarGANv2 has a somewhat lower FID value than the other
two). The overall visual impression of this table is different com-
pared to the VERA results with many more grey fields appearing

(i.e. PAD accuracy is lower in general). Also BaseLine accuracy is
at a less useful level for this more challenging dataset. We have two
features with excellent results when the PAD system is trained on
synthetic data (for all GAN-types: Haralick and TransferNN), but
many more with very poor performance making them useless (i.e.
again LBP, Fourier, and FscratchNN, but also BSIF, DenseSIFT and
DenseHOG). Again, the DRIT generated data is performing worst,
while CycleGAN generated data gives the best results (confirming
visual impression and quantitative quality measures).

Table 2: SCUT - Quantitative results: FID, OS, and ACER
(BaseLine and training with four variants of GAN synthe-
sised PAI samples). Lines marked by “*” will be analysed in
section 4.1.

BaseLine CycleGAN DistanceGAN StarGANv2 DRIT
FID OS FID OS FID OS FID OS
41 2.0 110 4.5 74 4.0 122 4.0

Method ACER [%] ACER [%] ACER [%] ACER [%] ACER [%]
Histogram∗ 2 2-4 3-6 2 38-44
Variance∗ 9 8 8 4-6 20
Entropy∗ 4 6-11 36-37 2 46
FactDim 6 15-18 29-33 13-14 25-29
Haralick 0 0 0 0 0
LBP∗ 4 30-33 50 50 50
BSIF 0 40-50 38-41 50 45-47

Fourier∗ 18 50 50 50 50
DenseSIFT 6 35-37 44-48 16-18 43-44
DenseHOG 6 31-34 47-48 21-29 47-49
TransferNN 1 3 3 3 3
FscratchNN∗ 3 73-76 60-64 47-53 48-52

Finally, we discuss results computed on the PLUS dataset. When
comparing the qualitative visual impression of the generated sam-
ples to the quantitative findings in Table 3, we observe a similar
ranking (at least in terms of FID): CycleGAN is in the lead, Distance-
GAN and StarGANv2 about the same, and DRIT worst. CycleGAN
is in the lead also in terms of OS, while DRIT takes the second
place in this category (eventually, the displayed PAI sample is of
untypically poor quality for DRIT).

Table 3: PLUS - Quantitative results: FID, OS, and ACER
(BaseLine and training with four variants of GAN synthe-
sised PAI samples). Lines marked by “*” will be analysed in
section 4.1.

BaseLine CycleGAN DistanceGAN StarGANv2 DRIT
FID OS FID OS FID OS FID OS
57 2.0 111 4.5 128 4.5 163 3.5

Method ACER [%] ACER [%] ACER [%] ACER [%] ACER [%]
Histogram 0 0 0 1 0
Variance 1 6-9 1-3 2 13-16
Entropy 0 0 0 0 0
FactDim 1 1 2 3-5 59-61
Haralick 0 0 0 0-3 0-21
LBP∗ 0 1 50 50 50
BSIF 0 3-4 2 1-2 2-3

Fourier∗ 4 50 50 50 50
DenseSIFT 1 2 2 2 2
DenseHOG 0 0-2 0-2 0-2 11-44
TransferNN 1 3 3 3 3
FscratchNN∗ 3 69-75 54-65 45-50 54-65

For the PLUS dataset, we see the overall best PAD accuracy
results among the three datasets considered. Excellent BaseLine
performance, and also excellent accuracy values for PAD training
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with synthetic data except for LBP, Fourier, and FscratchNN features.
This is true for all GAN-types but DRIT, for which we observe
three additional feature types with degraded accuracy (Variance,
FractDim, DenseHOG). Obviously, the quite distinct structure of the
(real and synthetic) PAI samples as compared to bona fide samples
helps to result in good PAD accuracy.

The results presented show significant variation in error rates
depending on the combination of feature extraction methods, data
generation techniques, and dataset considered. For the same fea-
ture, some synthetic data generation methods produce very low
error rates, while others produce extremely high ones. In a vast
majority of cases, the purely quality-oriented metrics (FID and OS)
provide a reasonable prediction for the outcome in terms of PAD
accuracy. Consequently, DRIT and DistanceGAN generated PAI
samples cannot be recommended in the context of PAD training.
The following subsection aims to shed light on the reason for the
poor performance of some features used.

4.1 Results Discussion
In this section we aim to have a closer look at the results, in partic-
ular to reveal the reason for particularly poor performing settings.
We facilitate this by analysing the per-class PAD classification ac-
curacies, i.e. BPCER and APCER, respectively. Table 4 shows the
SCUT dataset results for a selection of poorly performing feature
sets. We are confronted with an interesting result – for all but two
cases (out of overall 24, i.e. four GAN types times six feature sets),
BPCER is significantly lower than APCER. The Fourier feature set
takes this to the extreme: While all bona fide samples are correctly
classified (BPCER = 0%), none of the PAI samples is, resulting in
APCER = 100% (we see the identical behaviour for LBP except for
the CycleGAN data).

Table 4: SCUT - detailed quantitative results: BPCER and
APCER for each GAN.

CycleGAN DistanceGAN StarGANv2 DRIT
BPCER APCER BPCER APCER BPCER APCER BPCER APCER

Method [%] [%] [%] [%]
Histogram 3 3 3 4 3 1 3 84
Variance 8 7 3 13 7 5 2 37
Entropy 1 22 0 71 1 4 0 92
LBP 2 44 0 100 0 100 0 100

Fourier 0 100 0 100 0 100 0 100
FscratchNN 35 70 9 92 66 39 1 99

Table 5 shows corresponding results of poorly performing feature
sets for the PLUS dataset. We observe exactly the same behaviour
in that for those feature sets, it is the complete inability of the
classifier to correctly identify PAI samples which causes the poor
results (for LBP and Fourier features APCER = 100% consistently).
The FscratchNN results exhibit a more balanced poor performance,
only the DRIT results also point into the same direction as seen for
the other feature sets.

What is happening here ? These results are associated with the
ambiguity which data properties are emphasised by the used feature
extraction. In the setup of our PAD training using synthetic PAI
samples, a feature extraction scheme may focus on two different
things: First, the intended discrimination into bona fide vs. PAI
samples (which is based on the visual similarity of real and synthetic
PAI samples). Second, a feature extraction scheme may accentuate

Table 5: PLUS - detailed quantitative results: BPCER and
APCER for each GAN.

CycleGAN DistanceGAN StarGANv2 DRIT
BPCER APCER BPCER ACPER BPCER APCER BPCER APCER

Method [%] [%] [%] [%]
LBP 0 1 0 100 0 100 0 100

Fourier 0 100 0 100 0 100 0 100
FscratchNN 52 50 50 46 48 50 25 72

properties that are used to discriminate real from synthetic images
[6], as the bona fide samples are real natural pictorial data, while
the GAN-generated PAI samples are synthetic. If the second case
applies, the PAD system will recognise bona fide samples as well as
real PAI samples as being real image data, and will classify both into
the “real image” category, while the second category (“synthetic
data”, or the intended PAI sample data) stays empty. This is 100%
correct for bona fide images, but 0% correct for the PAI sample data.
When looking into the results shown in tables 4 and 5, we see this
effect occurring for almost all feature sets with poor overall PAD
accuracy. Most notably, this happens with full manifestation for
the Fourier features.

Why is this happening with such peculiarity for the Fourier
feature set ? It is well known that synthetic image data generated
by GANs carries a (more or less) imperceptible “model fingerprint”
which can be even used to identify the source GAN. While these
fingerprints can be well detected in the auto-correlation domain,
the most prominent domain for detection and visualisation is the
Fourier domain [4, 32]. Thus, of course bona fide samples as well
as real PAI samples do not carry such a fingerprint, while synthetic
PAI samples do. Figure 3 illustrates this property.

(a)

(b)

(c)

Figure 3: FFT magnitude of VERA dataset (a) bona fide and
PAI samples (b) CycleGAN and DistanceGAN synthetic PAI
samples (c) StarGan and DRIT synthetic PAI samples.

The most obvious difference between real data (line 1) and syn-
thetic data (lines 2 & 3) in the figure is that the Fourier magnitude of
real data looks brighter overall. This is not a normalisation error, but
the rather low quality real data have dispersed their energy across
almost all frequency bands (resulting in many non-zero coefficients
which generate the overall brighter appearance), while this is not
the case for the synthetic data exhibiting many more close-to-zero
coefficients, appearing darker. Additionally, upon closer inspection,
it gets evident that the actual model fingerprints are also present
indicated by periodic patterns, best seen in the CycleGAN data, but
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also present in the data generated by the other three GAN-types.
Thus it is entirely clear that Fourier features discriminate real from
synthetic data but not bona fide from PAI samples, respectively, as
the Fourier domain mainly emphasizes differences between real
and synthetic image data.

On the other hand, the stable performance of the TransferNN
feature set across all data sets and GAN-types may be attributed to
the fact that the underlying network has been trained on visually
different classes from the ImageNet data, which differs by specific
visual (perceptually relevant) clues but certainly not by specific
(nearly imperceptible) features in the Fourier domain. For most
other feature types, they also lean more towards taking advantage
of visual similarity, however, interestingly, only LBP sets the focus
more towards the model fingerprints as well. The small network
trained from scratch is the only feature set which seems to be
kind-of undecided which content it is more concerned with.

5 Conclusion
Among the four I2I translation GANs we have identified a clear
ranking: CycleGAN generated PAI samples are best suited to train
PAD (note the correspondence to [29], where CycleGAN synthe-
sised PAI samples are found to be best suited for vulnerability
assessment). DRIT generated data are hardly suited at all in the
context of PAD. DistanceGAN and StarGANv2 rank in-between.
Overall, this result corresponds well to visual appearance and ob-
jective quality measures of the synthetic PAI samples. Thus, we
may conclude that CycleGAN generated finger vein PAI samples
enable dual usage, i.e. assessing system vulnerability against PA
and training PAD techniques.

However, there are some particularities connected to the nature
of the PAD training: Different types of features used in PAD can
lead to very different behaviour of the PAD system trained with
synthetic data. For example, Fourier or LBP feature sets must not
be used as these respond more to the embedded GAN model finger-
prints than to visual similarity of synthetic and real PAI samples.
On the other hand, pre-trained neural network features, Haralick
features, and surprisingly, also simple features like histograms or
localised variance and entropy can be used in the PAD system and
lead to stable PAI sample detection results across all datasets and
GAN-types (except DRIT) considered.

Thus, to apply the findings in this paper for designing a fin-
ger vein PAD system employing synthetic PAI sample data the
following steps must be taken:

(1) For the biometric system to be protected, (real) PAI samples
need to be available in addition to the bona fide sample data.

(2) Generate synthetic PAI samples using CycleGAN using a
model trained on the available bona fide and real PAI samples,
respectively. The synthetic PAI samples are derived from
bona fide samples for which no real PAI samples do exist.
Results in [29] demonstrate that these PAI samples can be
used in vulnerability assessment as well.

(3) Select a feature representation identified to be applicable in
this work and train the PAD system with bona fide sample
data (class 1) vs. real and synthetic PAI samples (class 2).

Future work will investigate the actual application of the syn-
thetic data found to be suited (in this work) to enrich the training

data for a two-class PAD system. For this purpose, both real as well
as synthetic PAI data derived from distinct users shall be used for
training the attack class. The PAD system will be based on a suited
feature representation (as identified in this work). Additionally, we
will apply diffusion models and non-I2I transform GAN types for
generating PAI samples “from scratch”, i.e. only suited for PAD
training but not for impersonation, and will compare the results of
correspondingly trained PADs to this work. We will also investigate
the impact of recent GAN model fingerprint removal techniques
on the obtained results.
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