Proteinstruktur und KI

Wie künstliche Intelligenz Proteinstrukturen vorhersagt

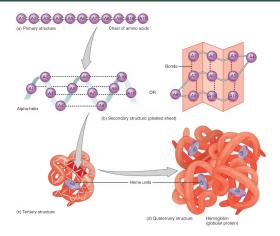
Fares Albakri, Adnan Memic, Anna Petrosyan

Fachbereich Informatik

11. Februar 2025

Gliederung

- 1 Einführung und Grundlagen
- 2 KI-Ansätze


3 Anwendungen und Herausforderungen

Was sind Proteine?

Proteine: Die Bausteine des Lebens

- Essenzielle Makromoleküle für biologische Prozesse
- Funktionen:
 - Enzyme: Katalysieren biochemische Reaktionen (z.B. Fettabbau)
 - Hormone: Regulieren Körperfunktionen (z.B. Insulin)
 - Strukturelle Komponenten: Bilden Haare, Haut und Muskeln
- Aufbau: Lange Ketten von Aminosäuren, verknüpft durch Peptidbindungen

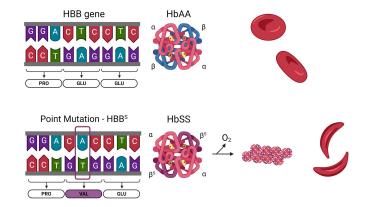
Proteinstruktur: Ein Überblick

Quelle: Zimmer, 2020. Al Makes Huge Progress Predicting How

Ebenen der Proteinstruktur

Die vier Ebenen der Proteinstruktur:

- Primärstruktur: Die Aminosäurensequenz
- Sekundärstruktur: Faltung in Alpha-Helices (Spiralen) und Beta-Faltblätter (Zickzackmuster)
- **Tertiärstruktur:** 3D-Faltung einer einzelnen Polypeptidkette zu einem funktionellen Protein
- Quartärstruktur: Zusammenschluss mehrerer Polypeptidketten (z.B. Hämoglobin)



Beispiel für Fehlfaltung: Sichelzellanämie

Sichelzellanämie: Eine einzige Aminosäureänderung

- Veränderung: Glutaminsäure (hydrophil) wird durch Valin (hydrophob) ersetzt
- Folgen:
 - Hämoglobin-Moleküle verklumpen
 - Sichelförmige rote Blutkörperchen blockieren den Blutfluss
 - Schmerzen, Müdigkeit und Organschäden
- Fazit: Eine kleine Änderung kann die Proteinfunktion stark beeinträchtigen

Beispiel von Sichelzellanämie

Quelle: Ramadas Sparkenbaugh, 2023. The APC-EPCR-PAR1 Axis in Sickle Cell Disease.

Die Komplexität der Proteinfaltung

Warum ist Proteinfaltung schwer vorherzusagen?

- Levinthals Paradoxon:
 - Ein kleines Protein mit 100 Aminosäuren hat mehr mögliche Faltungen als Atome im Universum
 - Trotzdem falten sich Proteine in Millisekunden
- Herausforderungen:
 - Wechselwirkungen zwischen Aminosäuren (z.B. Wasserstoffbrücken, hydrophobe Effekte)
 - Einfluss der Umgebung (z.B. Temperatur, pH-Wert)

Technische Herausforderungen und Lösungen

Wie unterstützt die Computerwissenschaft die Proteinmodellierung?

- **Simulationen:** Rechnergestützte Modelle helfen, Proteinfaltung vorherzusagen
- **KI und maschinelles Lernen:** Systeme wie AlphaFold revolutionieren die Proteinforschung
- Zukunftsausblick: Fortschritte in der Informatik ermöglichen neue medizinische Entdeckungen

Wie funktioniert AlphaFold?

Datenanalyse mit Multiple Sequence Alignment (MSA) AlphaFold sucht ähnliche Proteine in Datenbanken und erkennt Muster Vergleich wie Sprachverarbeitung bei GPT zur Mustererkennung

Wie funktioniert AlphaFold?

- Datenanalyse mit Multiple Sequence Alignment (MSA) AlphaFold sucht ähnliche Proteine in Datenbanken und erkennt Muster Vergleich wie Sprachverarbeitung bei GPT zur Mustererkennung
- Transformer-Netzwerk
 Berechnet, welche Aminosäuren interagieren
 Nutzt Self-Attention-Mechanismen ähnlich wie BERT

Wie funktioniert AlphaFold?

- Datenanalyse mit Multiple Sequence Alignment (MSA) AlphaFold sucht ähnliche Proteine in Datenbanken und erkennt Muster Vergleich wie Sprachverarbeitung bei GPT zur Mustererkennung
- Transformer-Netzwerk
 Berechnet, welche Aminosäuren interagieren
 Nutzt Self-Attention-Mechanismen ähnlich wie BERT
- 3D-Faltungsmodellierung mit Gradient Descent Optimiert die Struktur, um die wahrscheinlichste Faltung zu finden

Wie sicher ist die Vorhersage?

- AlphaFold gibt eine Vertrauensbewertung für jedes Atom
- Predicted Local Distance Difference Test-Score (pLDDT):
 - Blau: Sehr genau über 90
 - Gelb: Mittlere Genauigkeit zwischen 70 und 90
 - Rot: Unsichere Vorhersage unter 70
- Leukemia Inhibitory Factor (LIF)

Kann Tumorwachstum fördern oder hemmen

AlphaFold-Datenbank

Beispiel von Alphafold

Quelle: Google DeepMind, AlphaFold

Warum ist AlphaFold revolutionär?

■ Schneller - Proteinfaltung in Stunden statt Jahren

Warum ist AlphaFold revolutionär?

- Schneller Proteinfaltung in Stunden statt Jahren
- Günstiger Kosteneffizient durch KI-gestützte Simulationen

Warum ist AlphaFold revolutionär?

- Schneller Proteinfaltung in Stunden statt Jahren
- **Günstiger** Kosteneffizient durch KI-gestützte Simulationen
- Präzise Hohe Genauigkeit, vergleichbar mit Labormethoden

Zukunft von KI in der Proteinforschung

■ Präzisere Vorhersagen – Optimierte Deep-Learning-Modelle

Zukunft von KI in der Proteinforschung

- Präzisere Vorhersagen Optimierte Deep-Learning-Modelle
- KI in der Medikamentenentwicklung Schnellere und personalisierte Wirkstoffanalyse

Zukunft von KI in der Proteinforschung

- Präzisere Vorhersagen Optimierte Deep-Learning-Modelle
- KI in der Medikamentenentwicklung Schnellere und personalisierte Wirkstoffanalyse
- Hochleistungsrechnen und Cloud Skalierbare KI-Modelle für komplexe Berechnungen von Proteinen

Anwendungen: Medikamentenentwicklung

- Ziel: Wirkstoff finden, der an ein Zielprotein bindet
- **Problem:** Traditionelle Methoden sind zeitaufwendig und teuer
- Virtuelles Screening:
 - Computergestützte Methode zur Analyse chemischer Verbindungen
 - Filtert Millionen von Molekülen, um die besten Kandidaten zu finden
 - Vorteil: Spart Zeit und Geld durch Reduzierung aufwendiger Laborexperimente

Virtuelles Screening

1. Zielproteinanalyse:

- Analyse der Struktur eines Zielproteins, z.B.: mit AlphaFold
- Vorteil: Präzise Vorhersage der 3D-Struktur eines Zielproteins
- Entscheidende Grundlage für das virtuelle Screening und die Wirkstoffentwicklung

2. Auswahl der Moleküle:

- Moleküle werden aus großen Datenbanken wie ZINC und PubChem ausgewählt
- Filterung geeigneter Moleküle anhand chemischer und physikalischer Eigenschaften

Virtuelles Screening

3. Docking-Simulation:

- Simulation der Bindung zwischen einem Molekül und dem Zielprotein
- Es werden verschiedene Konformationen und Positionen getestet

4. Scoring:

- Bewertung der Bindungsstärke
- Je höher der Bindungswert desto höher die Wahrscheinlichkeit, dass das Molekül bindet

Anwendungen: Krankheitsforschung

- Fehlfaltungen von Proteinen führen zu neurodegenerativen Erkrankungen wie:
 - Alzheimer: Bildung toxischer Aggregate in Nervenzellen
 - Parkinson: Ansammlung fehlgefalteter Proteine
- Verständnis der Faltung und Fehlfaltung essenziell für die Ursachenforschung

AlphaFold:

- Verwendung zur Vorhersage der Proteinstruktur (3D-Modell)
- Die "vorhergesagte" Proteinstruktur wird mit der Fehlgefalteten verglichen

Anwendungen: Design von Proteinen

- Neue Proteine mit spezifischen Eigenschaften entwerfen
- Können eingesetzt werden in folgende Bereiche:
 - Medizin
 - Industrie
 - Umweltschutz

Rolle von KI:

- Nutzung von KI-Algorithmen wie neuronale Netzwerke
- Vorteil: Design von Proteinen wird schneller und präziser

Vielen Dank für Ihre Aufmerksamkeit!