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Disclaimer

The main aspects and ideas of this presentation are based on the
paper ”Generative Adversarial Networks” from Ian Goodfellow et al.

(2014) [2].
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Introduction

This person does not exist!

Figure: Result of StyleGAN. Src.:https://www.thispersondoesnotexist.com/ [1]
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Prerequisites
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The Perceptron

f (x;w) = φ
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Figure: A perceptron with three inputs x1 to x3 and an activation function φ
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Neural Networks / Multilayer Perceptron

f (x;w) = ? = y
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Forward Pass

h1i = φ

∑
j

xjw1ji
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Forward Pass

h2i = φ

∑
j

h1jw2ji
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Forward Pass

y = φ

∑
j

h2jw3j
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Forward Pass

y = f (x;w) = φ

∑
i

φ

∑
j

φ

(∑
k

xkw1kj

)
w2ji

w3i
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Activation Function φ

Figure: Different activation functions and their derivatives.
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Forward Pass

f (x;w) = φ

∑
i

φ

∑
j

φ

(∑
k

xkw1kj

)
w2ji

w3i


f is differentiable!
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Objective function (Cost/Loss)

We use a loss function (in this case Sum of Squared Differences) as a
quality metric of the net.

L(x;w) =
N∑

n=1

(f (x;w)− targetn)2
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Gradient Descent

w(i+1) = w(i) − η∂L(w)
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Figure: Simplified illustration of stochastic gradient descent with one weight.
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Back propagation

All we need: Chain Rule

y = f (u) u = g(x)

dy

dx
=

dy

du
∗ du
dx
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Back propagation

∂loss

∂w1ij
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Figure: A multi-layer-perceptron with three inputs x1 to x3 and an activation
function φ and hidden layers h
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Back propagation

We remember:

L(x;w) =
N∑

n=1

(f (x;w)− targetn)2

f (x;w) = φ(
∑
i

φ(
∑
j

φ(
∑
k

xkw1kj)︸ ︷︷ ︸
h1

w2ji )

︸ ︷︷ ︸
h2

w3i )

We calculate:

∂L(x;w)

∂w1ij
=
∂L(x;w)

∂f (x;w)
...
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Generative Adversarial Nets
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Generative Models

Figure: The generative model approximates the true data distribution by mapping
z pz to the data-space. Src.:https://openai.com/blog/generative-models/
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The Generative Adversarial Framework

Generator

DescriminatorRandom Noise
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Figure: The components of the generative adversarial framework as discribed in
[2].
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Generative Adversarial Nets
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Figure: The components of generative adversarial nets as discribed in [2].
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The objective function

A min max game!

min
G

max
D

V (D,G ) = Ex∼pdata(x) [logD(x)] + Ez∼pz (z)[log(1− D(G (z))]
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The objective function

Discriminator perspective

min
G

max
D

V (D,G ) = Ex∼pdata(x) [logD(x)] + Ez∼pz (z)[log(1− D(G (z))]
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The objective function

Generator perspective

min
G

max
D

V (D,G ) = Ex∼pdata(x) [logD(x)]+Ez∼pz (z)[log(1− D(G (z))]
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for number of training iterations do
for k steps do
• Sample minibatch of m samples {z (1), ..., z (m)} from pz .
• Sample minibatch of m samples {x (1), ..., x (m)} from pdata.
• Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD(x (i)) + log(1− D(G (z (i))))

]
end

• Sample minibatch of m samples {z (1), ..., z (m)} from pg .
• Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log(1− D(G (z (i))))

end
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Visualization of the Training Process

Figure: A GAN trying to approximate the normal distribution. Black represents
the normal distribution. Green the distribution generated by the Generator and
blue the discriminative distribution. Src.: [2]
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Theoretical Results

Nice! But can you prove it?
Yes No Maybe?!
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Global Optimality

All proofs consider the non parametric setting. (Infinite capability of
the nets.)

At any step the proofs consider an optimal discriminator.

Using the optimal discriminator they reformulate the criterion and
show that global minimum of the criterion is given for pg = pdata.
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Convergence of the Algorithm

The reformulated ”virtual” training criterion uses the Jenson-Shannon
divergence.

The proofs argue that this divergence is convex for a fixed pdata and
variable pg .

Since it is already proved that the global minimum is at pg = pdata
the algorithm will converge towards it.
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The reality

In practice, adversarial nets represent a limited family of pg distri-
butions via the function G (z ; θg ), and we optimize θg rather than
pg itself, so the proofs don’t apply.[2, p.7]
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Advantages

Backpropagation can be used. No other methods and/or
approximations due to intractable gradients required.

Statistical: The generator never sees images from the original data
distribution. Only the gradients. → No ”memorization” possible

GANs can model sharp and degenerate distributions while other
models need the distrubution to be ”smooth” to a certain extent.
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Disadvantages

There is no explicit representation of the distribution pg

The training of D and G has to be balanced

Immense amounts of data are required for training.
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Latent Space Arithmetic

The space where you draw a random input vector for your generator
is called ’Latent Space’

Some directions in this space have semantic meaning

Figure: man with glasses - man + woman = woman with glasses. Screenshot
from [3].
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Change of Style

Figure: cycleGAN. Screenshot from [4].
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HD Image generation from semantic map

Figure: Screenshot from [5].
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Text to Image

Figure: Screenshot from [6].
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Ethical Issues: Deepfake

Figure: Screenshot from Youtube [7].
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Thank You!
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I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
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Resources II

T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with conditional
gans,” in Proceedings of the IEEE Conference on Computer Vision and
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H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas,
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“https://www.youtube.com/watch?v=vwrhrbb-1ig.”
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