
MOTOROLA DIGITAL SIGNAL PROCESSING
DEVELOPMENT SOFTWARE

DSP563CCC

MOTOROLA DSP56300 FAMILY
OPTIMIZING C COMPILER USER’S MANUAL

This document contains information on a new product.
Specification and information herein are subject to change without notice.

MOTOROLA SEMICONDUCTOR PRODUCTS SECTOR SINGLE USER

SOFTWARE TOOLS LICENSE AGREEMENT

This license agreement covers the contents of the diskettes shipped with the DSP563CCC package, except
for the GNU derived programs g563c , alo563 , and mcpp , which are covered by the GNU General Public

License (see Appendix C).

WARNING - You should carefully read the following terms and conditions before in-

stalling the software package. Installing the software package indicates your ac-

ceptance of these terms and conditions. If you do not agree with them, you should

promptly return the package and your money will be refunded.

1. LICENSE GRANT - In connection with the transfer of possession of the software packages provided with
this Agreement, Motorola, Inc. (MOTOROLA) hereby grants to purchaser (LICENSEE) for its own internal
use, a personal, non-transferable paid-up, revocable, non-exclusive license to use the software program(s)
(SOFTWARE) and documentation (DOCUMENTATION) of said software package on a single central
processing unit (CPU).

2. OWNERSHIP - Title to the SOFTWARE and DOCUMENTATION, all copies thereof and all rights therein,
including all rights in patents, copyrights, and trade secrets applicable thereto remains vested in
MOTOROLA or its licensor. LICENSEE agrees not to remove or obliterate any copyright, trademark or
proprietary notices.

LICENSEE agrees not to reverse engineer, decompile, or disassemble SOFTWARE. This restriction
applies to executable programs, object files and resource files.

LICENSEE agrees not to include any portion of the SOFTWARE in the LICENSEE software applications
(APPLICATIONS). This restriction extends to all components of the SOFTWARE.

3. COPYING RIGHTS - LICENSEE may make backup copies of the SOFTWARE which may only be used
by LICENSEE in the event that the original SOFTWARE is damaged to restore the SOFTWARE to its
original condition. All other terms of this agreement remain in effect.

4. TRANSFERABILITY - LICENSEE agrees not to disclose, transfer, provide in any form, except as
otherwise provided in this agreement, the SOFTWARE or any portion thereof, to any person other than
employees of LICENSEE without prior written consent of MOTOROLA, and any such disclosure or transfer
shall be consistent with use on a single CPU.

5. TERM - The term of this license agreement is for as long as LICENSEE uses the SOFTWARE for its
intended purpose. This agreement may be terminated by LICENSEE upon one month prior written notice.

MOTOROLA may terminate this agreement if LICENSEE is in default of any of the terms and conditions of
this agreement, and termination is effective if LICENSEE fails to correct such default within thirty (30) days
after written notice thereof by MOTOROLA.

Within 30 days after termination of this agreement, LICENSEE will certify to MOTOROLA in writing that
through its best efforts, and to the best of its knowledge, the original and all copies, in whole or in part, in
any form, of the SOFTWARE and DOCUMENTATION have been destroyed or returned to MOTOROLA.

6. ASSIGNMENT, SUBLICENSE, OR TRANSFER - LICENSEE shall not (by contract, operation of law, or
otherwise) assign, sublicense under or transfer this agreement or any right or interest in this agreement, or
delegate performance of any of its obligations under this agreement, without the prior written consent of
MOTOROLA.

7. WARRANTY AND MAINTENANCE - The SOFTWARE is provided on an AS IS basis and without
warranty. IN NO EVENT SHALL MOTOROLA BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING FROM USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY EXTENDS
TO LICENSEE, TO LICENSEE’S TRANSFEREES AND TO LICENSEE’S CUSTOMERS OR USERS OF
PRODUCTS AND IS IN LIEU OF ALL WARRANTIES WHETHER EXPRESS, IMPLIED, OR STATUTORY,
INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR
PURPOSE.

MOTOROLA does not represent or warrant that the SOFTWARE or DOCUMENTATION furnished
hereunder is free of infringement of any third party patents, copyrights, trade secrets, or other intellectual
property rights. MOTOROLA does not represent or warrant that the SOFTWARE or DOCUMENTATION is
free of defect, or that it meets any particular standard, requirements or need of the LICENSEE or
LICENSEE’s customers.

MOTOROLA shall not be responsible for maintenance or field service of the program module(s) and
SOFTWARE under this agreement.

8. GOVERNING LAW - This agreement shall be governed and interpreted by the laws of the State of Illinois.

9. NOTICE - LICENSEE notices in connection with this Agreement shall be in writing and shall be given by
certified mail, return receipt requested, at the following address: Motorola, Inc., Austin Intellectual Property
Department, One Texas Center, 505 Barton Springs Road, Suite 500, Austin, Texas, 78704. Attn: Group
Patent Counsel

10. AGREEMENT - LICENSEE further agrees that this agreement constitutes the entire understanding of
LICENSEE and MOTOROLA with respect to the subject matter hereof and completely supersedes any prior
understandings, either oral or written. To the extent there is any inconsistency between this agreement and
any purchase order associated therewith, this agreement shall prevail. Any modification of this agreement
shall be made only by mutual agreement and evidenced by written amendment signed by both MOTOROLA
and LICENSEE.

TRADEMARKS AND COPYRIGHTS

DSP56300, DSP56301, DSP563CCC, G563C, G563-CC1, ALO563, and RUN563 are trademarks of Mo-
torola, Inc.
Motorola and the Motorola logo are registered trademarks of Motorola, Inc.
IBM and PC-DOS are trademarks or registered trademarks of International Business Machines Corporation.
MS-DOS and Windows are trademarks or registered trademarks of Microsoft Corporation.
NeXT is a trademark or registered trademark of NeXT, Inc.
Sun-3, Sun-4, SunOS, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc.
UNIX is a trademark or registered trademark of UNIX System Laboratories, Inc.
SPARC is a trademark or registered trademark of SPARC International, Inc.
All other products mentioned in this manual are covered by the trademarks or product names as designated
by the companies who hold those trademarks.

OFFER OF DSP56300 GNU C COMPILER SOURCE CODE TO REGISTERED USERS

Dear Customer:

As a registered user of the DSP56300 GNU C compiler object code, you are entitled
to a copy of the source of this software for a duplication and distribution fee. Please
read the following information about this software to determine if you are interested.
If you do determine that you are interested in obtaining the source, please contact your
local Motorola sales office or Motorola authorized distributor and place your order.
Ordering information is at the end of this letter.

Things to know about GNU C compiler source:

1.) The DSP56300 GNU C compiler source code is incomplete as a DSP56300 development tool.
To complete it, the tools provided in the DSP56300CLAS software package are required.
Motorola retains full rights to these programs. These Motorola proprietary software
programs are available from any Motorola authorized distributor in object form.

2.) Motorola will only distribute the source code to registered users of the Motorola
GNU C compiler object code. It is available from Motorola for $250.00 (suggested retail
price) to cover duplication and distribution. Motorola will provide technical support of
the GNU C compiler object code version (as sold by Motorola) only to registered users.

3.) No warranty or support will be provided for source code or customers’ derivative
object versions as described in the GNU General Public License. Contact the Free Software
Foundation for a list of consultants/companies which provide technical support for a fee.
The address of the Foundation is on the GNU General Public License Agreement.

4.) There is no documentation provided with the source and there will be no revision
upgrades to the source provided to customers.

5.) The minimum requirements one needs to build a 56300 C compiler out of this source
program are an ANSI C compiler and a make utility for your host system. Additionally, if
you are building this compiler on a PC 386/486 system, you will need a DOS extender to
override the 640K memory limitation imposed by the MSDOS operating system.
Please read the attached GNU General Public License for further information.

If you are interested in obtaining the source of this DSP56300 GNU C compiler, and are
a registered user of the object version, please contact your local Motorola sales office
or Motorola authorized distributor and place your order. Your serial number of the object
version of this software must be noted on your order and your registration card for the
object code version must be on file at Motorola.

Ordering information is as follows:
Suggested

Part Number Description Retail Price

DSP563CGNUS 56300 GNU C Compiler for PC 386/486 and UNIX $250.00

MOTOROLA DSP563CCC User’s Manual vii

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Chapter 1
Introduction

1.1 Overview . 1-1
1.2 Error Codes . 1-4
1.3 Notation . 1-4
1.4 Manual Organization . 1-4

Chapter 2
Installation Guide

2.1 Introduction . 2-1
2.2 Installation On An MS-DOS Machine (80386 or 80486) 2-1
2.3 Standard Installation On a SUN Running Solaris 1.x (SunOS 4.x) 2-3
2.4 Alternate Installation On a SUN Running Solaris 1.x (SunOS 4.x) 2-4
2.5 Standard Installation On a SUN Running Solaris 2.x (SunOS 5.x) 2-4
2.6 Alternate Installation On a SUN Running Solaris 2.x (SunOS 5.x) 2-5
2.7 Standard Installation On a HP Running HP-UX 9.x. 2-5
2.8 Alternate Installation On a HP running HP-UX 9.x 2-6
2.9 Test Program. 2-6

Chapter 3
Control Program Options

3.1 Overview . 3-1
3.2 g563c Command Line Options . 3-4

Chapter 4
About g563c

4.1 Introduction . 4-1
4.2 Identifiers . 4-1
4.3 Predefined Preprocessor Macro Names . 4-1
4.4 Data Types and Sizes . 4-1
4.5 Register Usage . 4-6
4.6 Memory Usage . 4-8

viii DSP563CCC User’s Manual MOTOROLA

Table of Contents (Continued)
Paragraph Page

Number Title Number
4.7 Compiler Naming Conventions . 4-12
4.8 Subroutine Call Sequence . 4-12
4.9 Software Support for Arithmetic Routines . 4-13
4.10 Run-time Safety . 4-14
4.11 Optimization Techniques Implemented . 4-14

Chapter 5
Mixing C and Assembly Language

5.1 Overview . 5-1
5.2 In-line Assembly Code. 5-1
5.3 #pragma Directive . 5-17
5.4 Out-of-line Assembly Code . 5-20

Chapter 6
Software-Hardware Integration

6.1 Overview . 6-1
6.2 Run-Time Environment Specification Files . 6-1
6.3 The crt0 File. 6-2
6.4 Signal File . 6-8
6.5 Setjmp File. 6-10
6.6 Host-Supported I/O (printf (), et al) . 6-11

Appendix A
Library Support

Appendix B
Utilities

asm56300 — Motorola DSP56300 Family Assembler B-2
cldinfo — Memory size information from Motorola DSP COFF object file. . B-6
cldlod — Motorola COFF to LOD Format converter B-7
cofdmp —Motorola DSP COFF File Dump Utility . B-8
dsplib — Motorola DSP COFF Librarian . B-9
dsplnk — Motorola DSP COFF Linker. B-11
run563 — Motorola DSP563XX Simulator Based Execution Device. B-16
srec — Motorola DSP S-Record Conversion Utility. B-17

Appendix C
GNU General Public License

MOTOROLA DSP563CCC User’s Manual 1-1

Chapter 1
Introduction

1.1 Overview
The DSP563CCC GNU based C cross-compiler is the latest high-level language devel-
opment system for the Motorola DSP56300 family of digital signal processors (DSPs). It
includes:

• an integrated control program — g563c
• an ANSI compliant C language preprocessor — mcpp
• an ANSI optimizing C compiler — g563-cc1
• an assembly language optimizer which does instruction scheduling and coa-

lescing (combining ALU operations with MOVEs) — alo563
• a DSP56300 common object file format (COFF) assembler — asm56300
• a COFF linker — dsplnk
• a COFF librarian — dsplib
• a simulator based command-line execution program — run563
• various object file manipulation tools — cldinfo, cldlod, cofdmp, srec, strip

This integrated software system runs on a variety of machines and operating systems,
including the IBM PC (80386 family and above — 386sx, 486, etc.), Sun SPARC
workstations, and HP 700 series workstations.

The compiler implements the full C language as defined in American National Standard
for Information Systems - Programming Language - C, ANSI X3.159-1989. It accepts
one or more C language source files as input and generates a corresponding number of
assembly language source files which are suitable as input to the assembler. The com-
piler automatically implements numerous optimizations.

The C language preprocessor is an implementation of the ANSI standard which includes
support for arbitrary text file inclusion, macro definition and expansion, and conditional
compilation. The preprocessor exists as a separate program and may be used as a gen-
eral-purpose macro preprocessor.

1-2 DSP563CCC User’s Manual MOTOROLA

C Source
Files

COFF
Assembler

COFF
Linker

COFF
Librarian

ANSI C
Compiler

run simulator

User
Defined
Libraries

ANSI
C

Library

ANSI
C

Library

ADS

Execution Devices

User’s Input Files

Asm
Files

Figure 1-1. Motorola Software Development System

Target
System

ANSI C
Preprocessor

srec

Optional

User
Provided
PROM

Programmer
utility

Conversion

Assembly
Optimizer

Optional

MOTOROLA DSP563CCC User’s Manual 1-3

The compiler control program, g563c , is the standard compiler interface used to control
the sequence of operations required to compile a program. This control program allows
the user to select a wide variety of control options which affect the four compilation phas-
es — preprocessing, compiling, assembling, and linking. The control program parses the
command line options, and invokes the required sub-programs on the specified files.

Note : Object files are stored using the COFF format. COFF stands for Common Object File Format.

Utilities such as cldinfo and cldlod may be used to gain visibility into object files.

1. Given a list of C source files from the user (see Figure 1-1) and options to
apply to those files, the control program runs each file through the C
preprocessor and the C compiler. The compiler creates individual assembly
language source files for each C source file provided on the command line.

2. The control program then sends the compiler output from these files to the
assembler, in addition to any assembly language files specified by the user on
the g563c command line.

3. The assembler output is routed to the linker for final processing. The linker
resolves all unresolved link-time symbols with the standard (and any explicitly
requested) C libraries. The COFF linker object file output may then be directed
to any of several execution devices. Notice that the assembler can also be
used to create library files which can be included in a user defined library.

4. The execution devices shown in Figure 1-1 are:

a. run563 which allows the DSP56300 code (in COFF format) to be executed
on the host computer’s CPU,

b. sim56300 which is a complete DSP56300 simulator that can be used to
execute the compiled application (in either COFF format or ‘.lod’ file format)
and allow examination of registers and memory,

c. ads56300 is the development system hardware that can then be used to
load and execute the compiled application (in either COFF format or ‘.lod’
file format) on the ADS development system, and

d. the target system shown is the user’s custom DSP system.

Note :The three execution devices in the shaded boxes are not part of the C compiler software. The COFF

linker output can be used by these execution devices directly. The conversion utility srec (see Figure 1-1)

can be used to convert the executable file from the COFF Linker to a suitable format for PROM burning.

These PROMs can then be used on the ADS development system or the user’s target system. The PROM

programmer, ADS development system, and user’s target system are not part of the DSP563CCC

compiler system.

The DSP56300 family represents a departure from more conventional architectures on
which many other implementations of the C language are based (no byte-addressable
memory, multiple memory spaces, unusual addressing modes, etc.). Also, the nature of
DSP applications dictates that a great measure of control be provided to the programmer

1-4 DSP563CCC User’s Manual MOTOROLA

in specifying the constraints of the run-time environment. For these reasons, the compo-
nents of the development system include options for handling stack initialization, chip op-
erating modes and other issues.

The purpose of this manual is to:

1. provide detailed installation procedures for both UNIX based systems and
MS-DOS based systems. This manual explains how to install and operate the
DSP563CCC compiler development system.

2. provide an overview of the compiler operation. It also includes information on
combining C modules with assembly language programs and advanced topics
pertaining to compiler run-time characteristics.

3. provide reference information on compiler options, ANSI library routines, and
utilities.

This manual assumes a familiarity with the C programming language, and with the host
machine and operating environment. It also assumes that the programmer understands
how to create and edit C language source files on the host system.

1.2 Error Codes
The error messages generated by the compiler are intended to be complete without ad-
ditional explanation. Since the compiler produces a detailed description of the problem
rather than an error code, these error messages have not been reproduced in this manu-
al.

1.3 Notation
The following notation will be used in this text.

1. A prompt is indicated in this manual by:
C:\>

2. An example of an MS-DOS directory name is:
\USR\DIRECTORY

3. The contents of an MS-DOS directory are examined by entering:
C:\> DIR

4. The contents of an MS-DOS file are displayed by entering:
C:\> TYPE FILE

5. The program “HELLO.EXE” would be executed by the command line:
C:\> HELLO

1.4 Manual Organization
Installation details are provided in Chapter 2, the compiler operation is described in
Chapters 3-6 and reference information is in Chapter 3 and Appendices A-C. The con-
tents of each chapter and each appendix are described below.

Chapter 1, Introduction , describes the overall organization of the DSP563CCC compil-

MOTOROLA DSP563CCC User’s Manual 1-5

er system. It also details the structure of this document, and conventions followed herein.

Chapter 2, Installation Guide , describes the installation and organization of
DSP563CCC. It details how to set up an operating environment on the host system by
defining global environment variables and includes a step-by-step installation procedure.

Chapter 3, Control Program Options , discusses the four passes of the compilation
process with particular attention to the functions of the compiler control program g563c.
This chapter includes a list of the compiler invocation options along with example com-
mand lines for different memory and program configurations.

Chapter 4, About g563c, provides information on the compiler run-time environment, in-
cluding explanations of compiler register and memory usage, stack frame architecture,
stack overflow checking, and defining/referencing of absolute memory locations. Addi-
tionally, this chapter covers implementation issues such as data type sizes.

Chapter 5, Mixing C and Assembly Language , discusses the methods for using as-
sembly language in conjunction with C language programs. It covers the inclusion of as-
sembly language within a C source file and also describes linking assembly language
modules with C modules and linking C modules with assembly language modules.

Chapter 6, Software-Hardware Integration , describes how to modify a program’s
run-time environment, how to write software to handle interrupts, and the set-
jmp /longjmp ANSI library routines.

Appendix A, Library Support , provides a complete description and brief example for
every ANSI library subroutine distributed with the C compiler.

Appendix B, Utilities , provides documentation for each of the support utilities provided
with the compiler.

Appendix C, GNU General Public License , explains your rights as to the redistribution
of the GNU based programs g563c , g563-cc1 , and mcpp .

1-6 DSP563CCC User’s Manual MOTOROLA

MOTOROLA DSP563CCC User’s Manual 2-1

Chapter 2
Installation Guide

2.1 Introduction

This chapter describes installation on MS-DOS, Solaris/SunOS, and HP-UX 9.x. Two in-
stallation procedures are detailed for each the Sun and HP. The first procedure uses the
default location for the files. The second procedure allows the user to select the directory
where the compiler’s files will be located. Only one procedure is needed for MS-DOS ma-
chines.

The various parts of the compiler reside in a directory tree named dsp . The default loca-
tion for the dsp directory tree is /usr/local on UNIX systems. If this default location is ac-
ceptable, then perform the standard installation; if it is not acceptable, then perform the
alternate installation. The alternate installation procedure allows the user to install the dsp
directory tree anywhere.

2.2 Installation On An MS-DOS Machine (80386 or 80486)

1. Insert the supplied floppy labeled Disk 1 into floppy drive A: .

2. Change to floppy drive A, with the command A: .

3. Run the install program, install.exe . This installation program will ask questions
about the computer being used and about where the compiler’s directory tree, dsp ,
is to reside.

4. Add all new commands specified by install into the autoexec.bat file. The only
difference between the standard and alternate installation procedure on the PC is
whether or not the default output drive and default location are selected. If the
defaults are not selected, an environment variable named DSPLOC must be set in
the autoexec.bat file. The install program will provide directions. DSPLOC need
only be set if the default output drive or the default location is not chosen. If
DSPLOC is set, it must be set to the location of the dsp directory tree. For example,

2-2 DSP563CCC User’s Manual MOTOROLA

if the user installed the compiler’s directory tree dsp in the directory d:\usr\mydir ,
then DSPLOC would need to be set as d:\usr\mydir:

SET DSPLOC=<compiler’s dsp directory tree>

if the directory <compiler’s dsp directory tree> is d:\usr\mydir, then

SET DSPLOC=D:\USR\MYDIR

5. Make sure that <compiler’s dsp directory tree>\dsp\bin is included in the path
instruction. This is needed by command.com if it is to find g563c . If the default
drive and path were chosen, then the path c:\dsp\bin would need to be added as
follows:

PATH ...;C:\DSP\BIN;...

If, for example the compiler’s dsp directory tree was installed in c:\usr\mydir , then
c:\usr\mydir\dsp\bin would need to be added as follows:

PATH ...;C:\USR\MYDIR\DSP\BIN;...

6. Make sure that other DOS memory managers do not interfere with the DOS ex-
tended memory manager for g563c . The compiler uses its own DOS extended
memory manager called dos4gw.exe , and this memory manager may not work if
a different memory manager is already installed. Although this DOS extender is
DPMI 0.9 compliant, It is recommended that initially all other DOS extended mem-
ory managers be removed, in order to test the installation. The DOS extended
memory manager dos4gw.exe is called during the compiler’s execution, and re-
quires at least 4M bytes of RAM. This memory manager uses hard drives for the
swap space for the memory management. By default, the swap space location is
the C drive and the size of the swap space is 16 Mbytes.

MOTOROLA DSP563CCC User’s Manual 2-3

7. The DOS environment variable DOS4GVM controls the configuration of the DOS
extended memory management, and the environment DOS4GVM has the follow-
ing format.

 [option[#value]] [option[#value]]

The possible parameters for the option are:

MINMEM The minimum amount of RAM managed by the memory
manager. Default value is 512KB.

MAXMEM The maximum amount of RAM managed by the memory
manager. Default value is 4MB.

SWAPNAME The swap file name the memory manager uses for the
swap space. Default is DOS4GVM.SWP on the current
drive.

DELETESWAP Specifies that the swap file should be deleted after mem-
ory management.

VIRTUALSIZE The size of the virtual memory space. Default is 16MB.

The value should be entered as numeric valueof Kbytes.

As an example, the following line in the autoexec.bat file will enable an 8MB swap
file with automatic deletion of the swap file:

SET DOS4GVM=DELETESWAP VIRTUALSIZE#8192

The following line will use F drive for the swap space instead of the current drive.

SET DOS4GVM=DELETESWAP SWAPNAME#F:\BIG.SWP

2.3 Standard Installation On a SUN Running Solaris 1.x (SunOS 4.x)

1. Insert the supplied floppy labeled Disk 1 into the floppy drive.

2. Login as root .

3. Enter the command: cd /usr/local .

4. Enter the command: bar xZvf /dev/rfd0 . If the floppy drive must be accessed via
a different device file than rfd0 , then use the appropriate device for your system.

5. Logout.

2-4 DSP563CCC User’s Manual MOTOROLA

6. Make sure that all users add /usr/local/dsp/bin to their path. This enables the shell
to find the control program g563c and other programs in the DSP563CCC distribu-
tion package.

2.4 Alternate Installation On a SUN Running Solaris 1.x (SunOS 4.x)

1. Insert the supplied floppy labeled Disk 1 into the floppy drive.

2. Login as root , or as yourself, if access permissions allow.

3. Inside the shell, use the command cd to go to the directory where the compiler’s
dsp directory tree is to reside. For this example, assume that the compiler is to be
installed in /usr/mydir (referred to by <compiler’s dsp directory tree> here).

4. Make sure that you have write permission in the directory.

5. Enter the command: bar xZvf /dev/rfd0 . If the floppy drive must be accessed via
a different device file than rfd0 , then use the appropriate device for your system.

6. Make sure that every user adds <compiler’s dsp directory tree>/dsp/bin to their
path. In this example, the path /usr/mydir/dsp/bin would be added to everyone’s
path.

7. Make sure that every user sets the environment variable DSPLOC to the path
leading to the dsp directory tree which is the directory <compiler’s dsp directory
tree> . In this example, DSPLOC would be set to /usr/mydir . Note that DSPLOC
would not be set to /usr/mydir/dsp .

2.5 Standard Installation On a SUN Running Solaris 2.x (SunOS 5.x)

1. Insert the supplied floppy labeled Disk 1 into the floppy drive.

2. Login as root .

3. Enter the command: volcheck .

4. Enter the command: cd /usr/local .

5. Enter the command: cpio -i -d -I /vol/dev/rdiskette0/unlabeled . If the floppy drive
must be accessed via a different device file than /vol/dev/rdiskette0/unlabeled ,
then use the appropriate device for your system.

6. When prompted for additional diskettes, eject the current one, insert the next one,
and type volcheck in another window (or after pausing the cpio job). Then contin-

MOTOROLA DSP563CCC User’s Manual 2-5

ue the cpio job by pressing return in the cpio window (or after continuing the cpio
job).

7. Logout.

8. Make sure that all users add /usr/local/dsp/bin to their path. This enables the shell
to find the control program g563c and other programs in the DSP563CCC distribu-
tion package.

2.6 Alternate Installation On a SUN Running Solaris 2.x (SunOS 5.x)

1. Insert the supplied floppy labeled Disk 1 into the floppy drive.

2. Login as root , or as yourself, if access permissions allow.

3. Enter the command: volcheck .

4. Inside the shell, use the command cd to go to the directory where the compiler’s
dsp directory tree is to reside. For this example, assume that the compiler is to be
installed in /usr/mydir (referred to by <compiler’s dsp directory tree> here).

5. Make sure that you have write permission in the directory.

6. Enter the command: cpio -i -d -I /vol/dev/rdiskette0/unlabeled . If the floppy drive
must be accessed via a different device file than /vol/dev/rdiskette0/unlabeled ,
then use the appropriate device for your system.

7. When prompted for additional diskettes, eject the current one, insert the next one,
and type volcheck in another window (or after pausing the cpio job). Then contin-
ue the cpio job by pressing return in the cpio window (or after continuing the cpio
job).

8. Make sure that every user adds <compiler’s dsp directory tree>/dsp/bin to their
path. In this example, the path /usr/mydir/dsp/bin would be added to everyone’s
path.

9. Make sure that every user sets the environment variable DSPLOC to the path
leading to the dsp directory tree which is the directory <compiler’s dsp directory
tree> . In this example, DSPLOC would be set to /usr/mydir . Note that DSPLOC
would not be set to /usr/mydir/dsp .

2.7 Standard Installation On a HP Running HP-UX 9.x

1. Insert the supplied DAT tape into the DAT drive.

2-6 DSP563CCC User’s Manual MOTOROLA

2. Login as root .

3. Enter the command: cd /usr/local .

4. Enter the command: tar xvf /dev/rmt/0m . If the DAT drive must be accessed via a
different device file than rmt/0m , then use the appropriate device for your system.

5. Logout.

6. Make sure that all users add /usr/local/dsp/bin to their path. This enables the shell
to find the control program g563c and other programs in the DSP563CCC distribu-
tion package.

2.8 Alternate Installation On a HP running HP-UX 9.x

1. Insert the supplied DAT tape into the DAT drive.

2. Login as root , or as yourself, if access permissions allow.

3. Inside the shell, use the command cd to go to the directory where the compiler’s
dsp directory tree is to reside. For this example, assume that the compiler is to be
installed in /usr/mydir (referred to by <compiler’s dsp directory tree> here).

4. Make sure that you have write permission in the directory.

5. Enter the command: tar xvf /dev/rmt/0m . If the floppy drive must be accessed via
a different device file than rmt/0m , then use the appropriate device for your sys-
tem.

6. Make sure that every user adds <compiler’s dsp directory tree>/dsp/bin to their
path. In this example, the path /usr/mydir/dsp/bin would be added to everyone’s
path.

7. Make sure that every user sets the environment variable DSPLOC to the path
leading to the dsp directory tree which is the directory <compiler’s dsp directory
tree> . In this example, DSPLOC would be set to /usr/mydir . Note that DSPLOC
would not be set to /usr/mydir/dsp .

2.9 Test Program

The following test program is intended to be a very simple check to see if the installation
has been completed correctly. The program should be put in a file named “hello.c”. The
control program, g563c , compiles the program in the file “hello.c” and generates the out-
put file “a.cld”. Do not enter the C:> as it is simply a prompt indicating that this line should
be entered from the keyboard. The command run563 executes the program in the file

MOTOROLA DSP563CCC User’s Manual 2-7

“a.cld” and the result is to print “hello world.” on the computer screen.

#include <stdio.h>
main()
{
printf(“hello world.\n”);
}

C:> g563c hello.c

C:> run563 a.cld

hello world.

Example Program

Commands to Compile and Execute the Example Program

Result Printed on the Computer Screen

Example 2-1. Test Program

2-8 DSP563CCC User’s Manual MOTOROLA

MOTOROLA DSP563CCC User’s Manual 3-1

Chapter 3
Control Program Options

3.1 Overview
Program g563c is the control program for Motorola’s optimizing C compiler for the
DSP56300 family of digital signal processors. The program g563c automates control of
the four C compiler phases – preprocessing, compiling, assembling, and linking. The
program g563c utilizes a command syntax similar to those adopted by typical UNIX utili-
ties. The g563c syntax is:

g563c [options] files

where:

1. [options] is one or more of the options found in this chapter. One difference
between g563c and UNIX-style utilities is that the combination of multiple
single character options is not allowed. For example, “-O -g” instructs the
compiler to generate an optimized executable with source level debug
information, whereas “-Og”, which is acceptable to UNIX-style compilers is not
acceptable to g563c .

2. “files …” are the files to be processed. Program g563c accepts input filenames
suffixed with “.c” (ANSI C source files), “.i” (preprocessed C source files),
“.asm ” (DSP56300 assembly code), and “.cln ” (COFF link files). The control
program processes each file according to this suffix. The g563c output is
controlled by the specific set of command line options provided. For instance,
if no command line arguments are provided, the compiler will attempt to
generate a COFF load file “a.cld ”. If the -c option is invoked, the compiler will
generate a COFF link file suffixed with “.cln ”. A complete description of the
command line options, with examples, is provided in Section 3.2.

Note: It is strongly recommended that g563c always be used to invoke the C com-
piler utilities rather than individually executing them.

3-2 DSP563CCC User’s Manual MOTOROLA

A standard directory search list is consulted by g563c for:

1. Each of the five executables,
a. mcpp – the C preprocessor,
b. g563-cc1 – the C compiler/optimizer,
c. alo563 – the assembly language optimizer,
d. asm56300 – the DSP56300 assembler,
e. dsplnk – the DSP56300 linker.

2. Start-up file, crt0563[xyl].cln .

3. ANSI C library, lib563c[xyl].clb .

This standard directory search list for UNIX systems is:

1. /usr/local/dsp/bin/

2. /usr/local/dsp/lib/

3. /lib/

4. /usr/lib/

5. ./

The standard MS-DOS directory search list for the path set up in Section 2.2 is:

1. c:\dsp\bin

2. c:\dsp\lib

3. c:

4. c:\dos

5. other directories in the path name

Note that if the environment variable DSPLOC is set, the value of DSPLOC will be
substituted for 1 and 2 above.

Table 3-1 lists all the user selectable options used by g563c. They are grouped to show
what program uses each option. All of these options are described in detail later in this
chapter; however, these lists provide an overview of what options are available. Notice
that there is a -v option listed under both g563c Command Line Options and Preproces-
sor Phase Options. This is actually the same option but it is used by these two programs
in different ways (see Section 3.2 and Section 3.2.1).

Under compile phase options, there is a group of -f options; these are the machine inde-
pendent optimization options whereas the -m options below are the optimization options
specific to the DSP56300. Although these various methods of optimization are all effec-
tive, they may have side effects which are undesirable in specific cases, e.g. an optimi-
zation option may increase code speed at the cost of increased memory usage. It is
often preferable to trade memory space for speed, but in cases where the extra memory
space is not available, a particular optimization might be unwise.

MOTOROLA DSP563CCC User’s Manual 3-3

The various compiler phases will report errors; however, the user has the option to turn
off all compiler warnings using -w and can enable additional warnings individually or as a
group using -Wall . The warnings which are not enabled by -Wall are those listed below
-Wall in Table 3-1.

g563c Command Line Options

-Bdirectory
-bPREFIX
-o FILE
-v

Preprocessor Phase Options

-C
-DMACRO
-DMACRO=DEFN
-E
-IDIR
-I-
-i FILE
-M
-MM
-nostdinc
-pedantic
-v
-UMACRO
-Wcomment
-Wtrigraphs

Assemble Phase Options

-asm string
-c

Link Phase Options

-crt file
-j string
-lLIBRARY
-r MAPFILE

Compile Phase Options

-alo
-fno-opt
-fno-peephole
-fno-strength-reduce
-fno-defer-pop
-fforce-addr
-finline-functions
-fcaller-saves
-fkeep-inline-functions
-fwritable-strings
-fcond-mismatch
-fvolatile
-ffixed-REG
-g
-O
-mconserve-p-mem
-mno-dsp
-mno-do-loop-generation
-mno-linv-plus-biv-promotion
-mp-mem-switchtable
-mx-memory
-my-memory
-ml-memory
-mstack-check
-pedantic
-Q
-S
-w
-W
-Wimplicit
-Wreturn-type
-Wunused
-Wswitch
-Wall
-Wshadow
-Wid-clash-LEN
-Wpointer-arith
-Wcast-qual
-Wwrite-strings

Table 3-1 - Options

3-4 DSP563CCC User’s Manual MOTOROLA

3.2 g563c Command Line Options
The default options are:

1. use strict ANSI syntax,

2. perform all machine dependent and independent optimizations

3. use trigraphs

4. locate data in the Y data memory space

-Bdirectory
Add directory to the standard search list and have it searched first. This can also be
accomplished by defining the environment variable G563_EXEC_PREFIX. Note
that only one additional directory can be specified and that the -B option will over-
ride the environment variable.

Example 3-1. To test a new version of the ANSI C library,
lib563cy.clb, which is installed as
\dsp\new \lib563cy.clb use:

C:\> g563c -B\dsp\new\ file.c -o file.cld

Example 3-2. Using the G563_EXEC_PREFIX environment variable to
have the same effect as Example 3.1, include in the autoexec.bat
file:

set G563_EXEC_PREFIX=C:\DSP\NEW\

and then execute:

C:\> g563c file.c -o file.cld

Example 3-3. To test a new version of the
DSP56300 C preprocessor before permanent installation, install a
new mcpp program as c:\tmp\new\mcpp and then execute:

C:\> g563c -Bc:\tmp\new\ testfile.c

-bPREFIX
Direct g563c to search for compilation phases, start-up files and libraries whose
names are prefixed with the word PREFIX. Note that only one additional prefix can
be specified. This is very similar to the -B option.

Example 3-4. Test a new version of the ANSI C library,
lib563cy.clb, installed as
 c:\dsp\lib\new-lib563cy.clb.

C:\> g563c -bnew- file.c -o file.cld

MOTOROLA DSP563CCC User’s Manual 3-5

Example 3-5. Test a new version of the DSP563CCC preprocessor before
permanent installation.

Install the new mcpp program dsp\bin\new-mcpp and

C:\> g563c -bnew- testfile.c

3-6 DSP563CCC User’s Manual MOTOROLA

-o FILE
Select FILE as the output file. This applies to all phases of the compiler. When the
-o flag is not in use, the following file names are used by the compiler as the default
output file names depending upon the compiler options as follows:

-E (preprocess only) stdout
-S (compile only) foo.asm
-c (no linkage) foo.cln
complete process a.cld

where stdout is “standard output” and prints to the console.

Example 3-6. Only generate a preprocessed file (do not invoke the
compiler, assembler or linker) and put the results in file.i.

C:\> g563c -E file.c -o file.i

Example 3-7. Compile file.c and generate the executable output file,
fft.cld . If an output name is not given, the default file name is a.cld.

C:\> g563c file.c -o fft.cld

-v
Verbose mode. The compiler control program announces to stderr all commands
that it attempts to execute for each phase of the compilation process. This com-
mand is also used by the preprocessor to print the software version information. If
the -E option is selected, -v will only enable the verbose mode, otherwise it will en-
able the verbose mode and print the version information.

3.2.1 Preprocessor Phase Options
The options listed below control the C preprocessor, which is run on each C source file
before actual compilation. Some options described only make sense when used in com-
bination with the -E option (preprocess only), as the requested preprocessor output may
be unsuitable for actual compilation. The default option is to use ANSI C syntax. For ex-
ample, if the -IDIR option is not specified then ANSI specifies that the current working di-
rectory will be searched first for user defined include files.

MOTOROLA DSP563CCC User’s Manual 3-7

-C
Tell the preprocessor not to discard comments. This option is only valid when used
in conjunction with the -E option.

Example 3-8. This example preprocesses a simple program, foo.c, without
discarding comments.

C:\> type foo.c
/*
 * This COMMENT won’t be deleted.
 */
main()
{
 printf("Hello, DSP56301\n");
}

C:\> g563c -E -C foo.c
1 "foo.c"
/*
 * This COMMENT won’t be deleted.
 */
main()
{
 printf("Hello, DSP56301\n");
}

3-8 DSP563CCC User’s Manual MOTOROLA

-DMACRO
Define the preprocessor macro MACRO with a constant value of 1. This is equiva-
lent to making MACRO a constant set to one.

Example 3-9. Compile and run a simple program, dsp.c, and enable or
disable a printed message depending on the macro definition given
at the command line.

C:\> type dsp.c
#include <stdio.h>
main()
{
#ifdef DSP56300

printf("message:
DSP56300.\n");

#else
printf("message:

DSP56301.\n");
#endif
}

C:\> g563c -DDSP56300 dsp.c
C:\> dir

a.cld dsp.c

C:\> run56 a.cld
message: DSP56300.

C:\> g563c dsp.c

C:\> ls
a.cld dsp.c

C:\> run56 a.cld
message: DSP56301.

MOTOROLA DSP563CCC User’s Manual 3-9

-DMACRO=DEFN
Define preprocessor macro MACRO as DEFN.

Example 3-10. The program dsp.c uses the macro
FROM_COMMAND_LINE which prints a message to the standard
output using a message code given on the command line.

C:\> type dsp.c
#include <stdio.h>
main()
{
 printf("message code: %d.\n", FROM_COMMAND_LINE);
}

C:\> g563c -DFROM_COMMAND_LINE=56300 dsp.c
C:\> dir

a.cld dsp.c

C:\> run563 a.cld
message code: 56300.

-E
The input source file will only be preprocessed through mcpp and the output results
will be sent to the standard output. See the -o option to save the output into a
named file.

Example 3-11. This example shows how to preprocess the C source
program foo.c and send the results to the standard output.

C:\> type foo.c
#define DELAY 1000
main()
{
 int cnt = DELAY;
 while(cnt--);
}

C:\> g563c -E foo.c
1 "foo.c"

main()
{
 int cnt = 1000 ;
 while(cnt--);
}

3-10 DSP563CCC User’s Manual MOTOROLA

Example 3-12. The mcpp output can be saved into file "foo.i" by using the -o
option.

C:\> type foo.c
#define DELAY 1000
main()
{
 int cnt = DELAY;
 while(cnt--);
}

C:\> g563c -E foo.c -o foo.i
C:\> dir

foo.c foo.i

C:\> type foo.i
1 "foo.c"

main()
{
 int cnt = 1000 ;
 while(cnt--);
}

MOTOROLA DSP563CCC User’s Manual 3-11

-IDIR
The control line of the C source program of the form

#include <filename>

will cause the replacement of that line by the entire contents of the file filename.
This is normally referred to as file inclusion . The named file is searched for in a se-
quence of implementation-dependent directories. The standard include directory for
this compiler is /usr/local/dsp/include on UNIX systems, and c:\dsp\include on
MS-DOS systems. Similarly, a control line of the form

#include “filename”

searches first in the current working directory, and if that fails, then searches as if
the control line were #include <filename>.

The option -IDIR directs the C compiler to include the directory DIR in addition to
the standard include directory. For the file inclusion <filename>, the compiler
searches first in the DIR directory and if that fails, then searches /usr/local/dsp/in-
clude or c:\dsp\include. For the file inclusion “filename”, the compiler searches first
in the DIR directory and if that fails, then searches the current working directory,
and if that fails also, then searches /usr/local/dsp/include or c:\dsp\include.

Example 3-13. A delay program foo.c uses delay constant DELAY which
is defined in the include file, myinclude.h. The program uses
the control line #include “myinclude.h” to include the definition
of the constant DELAY. Without any option, the include file
should be located in the current working directory since it is
not in the standard include directory. Assuming that the
include file “myinclude.h” is desired to be in the directory .\inc,
the following sequence of the commands explains how the -I
option is used to include the file myinclude.h in the ./inc
directory with the control line #include “myinclude.h” in the
foo.c program.

C:\> dir
foo.c inc/

C:\> dir inc
myinclude.h

C:\> type foo.c
#include "myinc.h" /* this is the control line to include it */
main()
{
 int cnt;

3-12 DSP563CCC User’s Manual MOTOROLA

 cnt = DELAY;
 while(cnt--);
}

C:\> type inc\myinc.h
#define DELAY 100

C:\> g563c -I.\inc foo.cC:\> dir
a.cld foo.c inc/

-I-
This option is always used in conjunction with the -IDIR option and limits the file
search to look for file inclusions #include “filename” , whereas -IDIR alone directs
C compiler to search the directory DIR for both file inclusion <filename> and
“filename”. Any directories specified with -I options before the -I- option are
searched only for the case of #include “filename” ; they are not searched for
#include <filename> .

If additional directories are specified with -I options after the -I- option, these direc-
tories are searched for both #include “filename” and #include <filename> direc-
tives.

As an example, the sequence of the options

-IDIRA -I- -IDIRB

directs C compiler to use both the directories DIRA and DIRB for the file inclusion
“filename” and DIRB only for file inclusion <filename>.

NOTE
The -I- option inhibits the use of the current directory as the first search
directory for #include “filename” . There is no way to override this ef-
fect of -I-. However, the directory which is current when the compiler is
invoked can be searched by using -I. This is different from the prepro-
cessor’s default search list, but it is often satisfactory. -I- does not inhibit
the use of the standard system directories for header files. Thus, -I- and
-nostdinc are independent.

MOTOROLA DSP563CCC User’s Manual 3-13

Example 3-14. A test program file.c is used to test a file operation fopen()
which is, in this example, desired to be developed for a
DSP56300 system. The file include <stdio.h> is used as if it is in the
standard include directory. The file is desired to be developed or
debugged, and it is located in the user working directory .\mysys.
This example shows how to use -IDIR and -I- combination to test file
inclusion <filename>. Notice that the -I./inc -I- -I./mysys option
specifies the inc directory only for the file inclusion “cnt.h” and
mysys directory for the file inclusion <stdio.h>.

C:\> dir
file.c inc/ mysys/

C:\> dir inc
cnt.h

C:\> dir mysys
stdio.h

C:\> type file.c
#include <stdio.h>
#include “cnt.h”
main()
{

int delay = COUNT;
FILE *fp;
fp = fopen(“myfile”, “w”);
while(--delay);

}
C:\> type inc\cnt.h

#define COUNT 25

C:\> type mysys\stdio.h
typedef struct FILE { /* FILE data structure to develop */

char name[10];
char buffer[1024];

 } FILE;
 FILE *fopen(char *, char *); /* new function to develop */

C:\> g563c -I.\inc -I- -I.\mysys -E file.c
1 ”file.c”
1 ”.\mysys\stdio.h” 1
typedef struct FILE {

char name[10];
char buffer[1024];

3-14 DSP563CCC User’s Manual MOTOROLA

} FILE;
FILE*fopen(char*,char*);
1 ”file.c” 2
1 ”.\inc\cnt.h” 1
2 ”file.c” 2

main()
{

int delay = 25;
FILE *fp;
fp = fopen (“myfile”, ”w”);
while (--delay);

}
Notice that the file inclusion “cnt.h” is from the directory ./inc as shown in the line # 1
“.\inc\cnt.h” 1 and the file inclusion <stdio.h> is from the directory .\myinc as shown in the
line # 1 “.\myinc\stdio.h” 1.

-i FILE
Process FILE as an input, discarding the resulting output, before processing the
regular input file. Because the output generated from FILE is discarded, the only ef-
fect of -i FILE is to make the macros defined in FILE available for use in the main in-
put.

Example 3-15. The program greeting.c prints a simple message using the
macro MESSAGE. The file macros.c contains the macro definition,
i.e. the actual message. The only role of the file macros.c is to
provide the macro definitions and will not affect any other code or
data segments.

C:\> dir
macros.c greeting.c

C:\> type macros.c
#define MESSAGE "Hello, world."

C:\> type greeting.c
#include <stdio.h>
main()
{
 printf("Greeting: %s\n", MESSAGE);
}

C:\> g563c -i macros.c greeting.c
C:\> run563 a.cld

MOTOROLA DSP563CCC User’s Manual 3-15

Greeting: Hello, world.

-M
Cause the preprocessor to output the makefile rules to describe the dependencies
of each source file. For each source file, the preprocessor outputs one make-rule
whose target is the object file name for that source file and whose dependencies
are all the files needed to generate the object target file. This rule may be a single
line or may be continued with ‘\’-newline if it is long. -M implies -E with makefile
rules.

Example 3-16. The program big.c, which prints the larger of two integers,
uses the macro greater(x,y) which is defined in the file greater.h. A
command line output using the -M option can be used for makefile
utilities. For more information on how to use this dependency check
the make utility information in any UNIX utility manual.

C:\> dir
big.c greater.h

C:\> type big.c
#include <stdio.h>
#include "greater.h"
main()
{
 printf("big:%d\n", greater(10,20));
}

C:\> type greater.h
#define greater(x,y) ((x)>(y)?(x):(y))

C:\> g563c -M big.c
big.o : big.c \dsp\include\stdio.h \dsp\include\ioprim.h \dsp\in-

clude\stdarg.h greater.h

-MM
Like -M but the output mentions only the header files described in the #include
“FILE” directive. System header files included with #include <FILE> are omitted.
-MM implies -E with makefile rules.

3-16 DSP563CCC User’s Manual MOTOROLA

Example 3-17. The program big.c, which prints the larger of two integers,
uses the macro greater(x,y) defined in the file greater.h. The -MM
option is used to generate a makefile rule. Notice that the rule that
generates an output file appended by “.o” can be modified to
generate “.cld” which is required for the Motorola Cross C Compiler.

C:\> dir
big.c greater.h

C:\> type big.c
#include <stdio.h>
#include "greater.h"
main()
{
 printf("big:%d\n", greater(10,20));
}

C:\> type greater.h
#define greater(x,y) ((x)>(y)?(x):(y))

C:\> g563c -MM big.c
big.o : big.c greater.h

C:\> dir
big.c greater.h makefile text

C:\> type makefile
a.cld : big.o
 g563c big.o
big.o : big.c greater.h
 g563c -c -o big.o big.c

C:\> make
g563c -c -o big.o big.c
g563c big.o

C:\> run563 a.cld
big:20

-nostdinc
Do not search the standard system directories for file inclusions. Only the directo-
ries specified with -I options (and the current directory, if appropriate) are searched.

Using both -nostdinc and -I- options, all directories from the search path except
those specified can be eliminated.

MOTOROLA DSP563CCC User’s Manual 3-17

Example 3-18. A test program, test.c, is used to test a new version of the
function printf() which is declared in a new header file inc\stdio.h.
The directive #include <stdio.h> causes the program to use stdio.h;
however, it would normally find it in the standard search directory,
c:\ds\include or /usr/local/dsp/include.Using the -nostdinc option
prevents the standard search directory from being searched and
allows the -l option to point to the correct directory.

C:\> dir
inc/ test.c

C:\> dir inc
stdio.h

C:\> type test.c
#include <stdio.h>
main()
{
 printf("Hello, there.\n");
}

C:\> type inc\stdio.h
void printf(char *);

C:\> g563c -nostdinc -I.\inc -E test.c
1 "test.c"
1 ".\inc\stdio.h" 1
void printf(char *);
1 "test.c" 2

main()
{
 printf("Hello, there.\n");
}

-pedantic
The -pedantic option is used by both the preprocessor and the compiler (see -pe-
dantic in the Compile Phase Options section for an explanation of this option).

-v
Output preprocessor version information. The primary purpose of this command is
to display the software version. This information is needed when calling the Motoro-
la DSP helpline for assistance. Although information pertaining to the internal flags
and switch settings is included in this information, it is not intended for use by the
programmer and may be misleading. This command is also used by the command

3-18 DSP563CCC User’s Manual MOTOROLA

program to initiate the verbose mode of operation.

Example 3-19. The -v option is selected using the control program
g563c. The version numbers for g563c ,mcpp and g563c-cc1 are
printed. This information is showing the commands that the control
program invokes along with the selected options. In this case it is
showing the default options plus the -v option. However, the user
should not invoke these programs independently but should
always use the control program to invoke them.

C:\> dir
foo.c

C:\> g563c -v foo.c
g563c version Motorola Version: g1.24 -- GNU 1.37.1

c:\dsp\bin\mcpp -v -undef -D__Y_MEMORY -trigraphs -$ -D__STRICT_ANSI__
-D__DSP563C__ -D__OPTIMIZE__ foo.c cca00527.cpp

GNU CPP version 1.37.1
c:\dsp\bin\g563-cc1 cca00527.cpp -ansi -fstrength-reduce -quiet -dumpbase foo.c

-O -version -o cca00527.asm

GNU C version1.37.1 Motorola DSP563XX Motorola Version:g1.24 compiled
by GNU C version 1.37.1.

default target switches: -mdsp -mlinv-plus-biv-promotion -mdo-loop-genera
tion -my-memory -mcall-overhead-reduction -mrep -mreload-cleanup
-mnormalization-reduction

c:\dsp\bin\asm56300 -c -B foo.cln -- cca00527.asm

c:\dsp\bin\dsplnk -c -B acld --c:\dsp\lib\crt0-y.cln foo.cln -L c:\dsp\lib\lib563cy.clb

C:\> dir
a.cld foo.c

-UMACRO
Undefine macro MACRO.

MOTOROLA DSP563CCC User’s Manual 3-19

Example 3-20. An application program, test.c, is being tested and some
portions of the code need to be debugged. The flag DEBUG may be
turned on or off through the command line with the -D and -U
options respectively. This flag can then be used inside the program
to enable/disable debugging features within the program.

C:\> dir
debug.c

C:\> type debug.c
#include <stdio.h>
main()
{
#ifdef DEBUG
 printf("debug: a message.\n");
#endif
 printf("normal operation.\n");
}

C:\> g563c -UDEBUG debug.c
C:\> run563 a.cld

normal operation.

-Wcomment
Warn the user whenever the comment start sequence /* appears within a comment.

Example 3-21. A comment is enclosed with /* and */ and therefore is ignored
by the preprocessor. Any number of leading /*’s are permitted within
the comment and will not be reported; however, a warning message
can be enabled by using the -Wcomment option.

C:\> dir
foo.c

C:\> type foo.c
/* foo.c */
main() { /* begin */
 int d = 1000; /* /* delay */
 while(d--); /* /* main /* loop */
} /* end */

C:\> g563c -Wcomment foo.c
foo.c:3: warning: ‘/*’ within comment
foo.c:4: warning: ‘/*’ within comment
foo.c:4: warning: ‘/*’ within comment

C:\> g563c foo.c

3-20 DSP563CCC User’s Manual MOTOROLA

-Wtrigraphs
Warn if any trigraphs are encountered (Trigraphs are sequences of three characters
which are replaced by a single character. These trigraph sequences enable the in-
put of characters that are not defined in the Invariant Code Set as described in ISO
646:1983, which is a subset of the seven-bit ASCII code set.).

3.2.2 Compile Phase Options
The default options are:

1. perform all machine dependent and independent optimizations

2. do not run the assembly language optimizer (alo563)

3. do not generate debugging information

4. locate data only in the Y data memory space.

-alo
Run the assembly language optimizer on the assembly language output of
g563-cc1 . This improves the utilization of parallel moves.

-fno-opt
Disable all optimizations.

-fno-peephole
Disable the peephole portion of optimization.

-fno-strength-reduce
Disable the optimizations of loop strength reduction and elimination of iteration vari-
ables as well as DSP56300 specific looping optimizations (DO instruction usage,
etc.).

-fno-defer-pop
By default, the compiler will try to defer (delay) restoring the stack pointer upon the
return of a function call. The purpose of deferring restoration of the stack pointer is
to reduce code size and decrease execution time; however, the stack penetration
may increase (see the DSP56300 Family Manual for information on stack overflow).

Examples of function calls that will not incur deferred pops whether or not the -fno--
defer-pop option is specified are:

• calls as function arguments

• calls in conditional expressions

• calls inside a statement expression

MOTOROLA DSP563CCC User’s Manual 3-21

-fforce-addr
Force memory address constants to be copied into registers before doing arithmetic
on them. The code generated with this option may be better or it may be worse de-
pending on the source code. This option forces memory addresses into registers
which, in turn, may be handled as common sub-expressions.

-finline-functions
Attempt to insert all simple functions in-line into their callers. The compiler heuristi-
cally decides which functions are simple enough to merit this form of integration.

If all calls to a given function are inserted, and the function is declared static , then
the function is no longer needed as a separate function and normally is not output
as a separate function in assembly code.

-fcaller-saves
Enable values to be allocated in registers that will be overwritten by function calls by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise
be produced.

-fkeep-inline-functions
Output a separate run-time callable version of the function even if all calls to a given
function are integrated and the function is declared static .

-fwritable-strings
Store string constants in the writable data segment without making them unique.
This is for compatibility with old programs which assume they can write into string
constants. Writing into string constants is poor technique; constants should be con-
stant.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third argu-
ments. The value of such an expression is void.

-fvolatile
Consider all memory references through pointers to be volatile.

-ffixed-REG
Treat the register named REG as a fixed register; generated code should never re-
fer to it (except perhaps as a stack or frame pointer). Legal values for REG are:

r0, r1, r2, r3, r4, r5

3-22 DSP563CCC User’s Manual MOTOROLA

This flag should be used sparingly as it can have devastating results on the code
generated.

Example 3-22. Reserve r4 for later special purpose.

C:\> g563c -O -ffixed-r4 file.c -o file.cld

Caution
C code that utilizes library code can produces non-deterministic results, as
the libraries have been written to utilize the complete set of registers.

-g
Produce COFF debugging information.

A key feature afforded by the use of the GNU C compiler (g563c) teamed with the
source level debugger is that the programmer is allowed to generate optimized
code with debug information (select options -g -O) making it possible for the pro-
grammer to debug optimized code directly. Due to the optimizations performed, it is
possible that variables will not be defined (unused variable elimination), statements
may not be executed (dead code elimination), and code may be executed early
(code motion). This is a partial list of the oddities that may be encountered when de-
bugging optimized code. However, the improved code performance due to optimi-
zation normally out weighs the problems encountered.

-O
Perform machine dependent and independent optimizations. This is the default
mode of the compiler.

Invoking the compiler with the optimizer may cause compile times to increase and
require more system memory.

Invoking the compiler without the optimizer should be done only when the program-
mer requires additional flexibility while debugging code. An example of such flexibil-
ity includes the ability to assign new values to declared c variables. Additionally,
non-optimized code takes register usage clues from the storage class specifier reg-
ister , something not done with the optimizer invoked.

Disabling the optimizer is done via -f options listed above.

-mconserve-p-mem
Generate code that consumes less program memory at the expense of run time.
Rather than generating a prologue and epilogue for each function, calls are made to

the prolog and epilog routines included in the library. Similarly, rather than doing in-

MOTOROLA DSP563CCC User’s Manual 3-23

line expansion of several operations (for instance modulus), a call to a library rou-
tine is emitted.

-mno-dsp-optimization
Disables all Motorola optimizer enhancements.

-mno-do-loop-generation
Disable DO instruction usage by optimizer.

-mno-biv-plus-linv-promotion
Disable the promotion of address expressions to address registers within loops.
This optimization transforms array base address plus induction variable expres-
sions into auto-increment/decrement style memory references.

-mp-mem-switchtable
Forces the compiler to locate all switch tables in P memory.

-mx-memory
Direct the compiler to locate data in the X data memory space. Memory modes can-

not be mixed, i.e. only one of -mx-memory, -my-memory or -ml-memory may be se-
lected.

Example 3-23. An application is programmed to utilize only the X data
memory space and therefore must be compiled using the
-mx-memory option.

C:\> ls
x.c

C:\> type x.c
void function(int a, int b);
int X;
main()
{
 int arg1,arg2;
 function(arg1, arg2);
}
void function(int a, int b)
{
 X = a + b;
}

C:\> g563c -S -mx-memory x.c

3-24 DSP563CCC User’s Manual MOTOROLA

C:\> dir
x.asm x.c

-my-memory
Direct the compiler to locate data in the Y data memory space. This is the default
memory mode. Memory modes cannot be mixed, i.e. only one of -mx-memory,
-my-memory or -ml-memory may be selected .

-ml-memory
Direct the compiler to locate data in the L data memory space. This has 2 side ef-
fects.

1. A performance increase for 48-bit data (double or long).

2. This requires that the X and Y memory spaces be evenly populated.

Memory modes cannot be mixed, i.e. only one of -mx-memory, -my-memory or
-ml-memory may be selected .

-mstack-check
Generate extra run-time code to check for run-time stack collision with the heap.
This option causes run-time execution times to increase dramatically.

-pedantic
Issue all the warnings demanded by strict ANSI standard C; reject all programs that

use forbidden extensions.

Without this option, certain GNU extensions and traditional C features are support-
ed. With this option, they are rejected. Valid ANSI standard C programs will com-
pile properly with or without this option.

-pedantic does not cause warning messages for use of the alternate keywords
whose names begin and end with “_ _”.

-Q
Direct the compiler to execute in verbose mode.

-S
Compile to DSP56300 assembly code with the original C source lines as comments
but do not assemble. The assembly language output is placed into a file suffixed
.asm .

MOTOROLA DSP563CCC User’s Manual 3-25

Example 3-24. Generate an optimized assembly language file (test.asm)
of the C source program (test.c).

C:\> dir
test.c

C:\> type test.c
#include <stdio.h>
main()
{
 int i = 100;
 printf("value:%d\n", i++);
}

C:\> g563c -S test.c
C:\> dir

test.asm test.c

Example 3-25. Generate an optimized assembly language file test.asm .

C:\> g563c -O -S test.c

-w
Inhibit all warning messages.

-W
Print extra warning messages for the following events:

• An automatic variable is used without first being initialized.

This warning is possible only when the optimizer is invoked during compilation
(default). The optimizer generates the data flow information required for reporting.

This warning will only occur for variables that are candidates for register promo-
tion. Therefore, they do not occur for a variable that is declared volatile , whose
address is taken, or whose size is other than 1 or 2 words (integral and float data
types). Warnings will not occur for structures, unions or arrays, even when they
are in registers.

There may be no warning about a variable that is used only to compute a value
that is never used because such computations may be deleted by data flow anal-
ysis before the warnings are printed.

Spurious warnings may be avoided by declaring functions that do not return as
volatile .

• A non-volatile automatic variable may be changed by a call to longjmp .

3-26 DSP563CCC User’s Manual MOTOROLA

This warning also requires that the optimizer be invoked.

The compiler sees only the calls to setjmp . It cannot know where longjmp will be
called; in fact, a signal handler could call it at any point in the code. As a result, a
warning may be issued even when there is no problem because longjmp cannot
be called at the place which would cause a problem.

A function can return either with or without a value. (Falling off the end of the func-
tion body is considered returning without a value.) For example, this function
would evoke such a warning:

foo (a)
{

if (a > 0)
return a;

}
Spurious warnings can occur because GNU CC does not realize that certain func-
tions (including ‘abort’ and ‘longjmp’) will never return.

• An expression-statement contains no side effects.

Example 3-26. Extra warning messages are wanted to help find potential
problems in a test function, foo(), which is programmed to return a
value only if a > 0.

C:\> dir
foo.c

C:\> type foo.c
int foo(int);
main()
{
 int i;
 foo(i);
}
int foo(a)
{
 if(a > 0)
 return a;
}

C:\> g563c -W foo.c
foo.c: In function main:
foo.c:4: warning: ‘i’ may be used uninitialized in this function
foo.c: In function foo:
foo.c:11: warning: this function may return with or without a value

MOTOROLA DSP563CCC User’s Manual 3-27

-Wimplicit
Warn whenever a function is implicitly declared.

Example 3-27. The function foo() is declared implicitly in the program foo.c,
the -Wimplicit option will generate a warning message for this
situation.

C:\> dir
foo.c

C:\> type foo.c
main()
{
 foo();
}
int foo(){}

C:\> g563c -Wimplicit foo.c
foo.c: In function main:
foo.c:3: warning: implicit declaration of function ‘foo’

C:\> dir
a.cld foo.c

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int . Also
warn about any return statement with no return-value in a function whose re-
turn-type is not void .

Example 3-28. The function foo() is declared as a function that should return
an integer but in this case does not return an integer. The
-Wreturn-type option generates a warning message in this situation.

C:\> dir
foo.c

C:\> type foo.c
int foo(), main();
int main()
{
 return foo();
}
int foo(){}

C:\> g563c -Wreturn-type foo.c
foo.c: In function foo:
foo.c:6: warning: control reaches end of non-void function

3-28 DSP563CCC User’s Manual MOTOROLA

C:\> dir
a.cld foo.c

-Wunused
Warn whenever a local variable is unused aside from its declaration, whenever a
function is declared static but never defined and whenever a statement computes a
result that is explicitly not used.

Example 3-29. The file foo.c contains an undefined static function, unused
local variable, and a dead statement. The -Wunused option will
issue warnings to indicate these situations.

C:\> dir
foo.c

C:\> type foo.c
static int foo();
main()
{
 int x;
 2+3;
}

C:\> g563c -Wunused foo.c
foo.c: In function main:
foo.c:5: warning: statement with no effect
foo.c:4: warning: unused variable ‘x’
foo.c: At top level:
foo.c:1: warning: ‘foo’ declared but never defined

C:\> dir
a.cld foo.c

-Wswitch
Warn whenever a switch statement has an enumeration type of index and lacks a
case for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) case labels outside the enumeration range
also provoke warnings when this option is used.

-Wall
All of the above -W options combined. The remaining -W options described below
are not implied by -Wall because certain kinds of useful macros are almost impos-
sible to write without causing those warnings.

MOTOROLA DSP563CCC User’s Manual 3-29

-Wshadow
Warn whenever a local variable shadows another local variable.

-Wid-clash-LEN
Warn whenever two distinct identifiers match in the first LEN characters. This may
help prepare a program that will compile with certain obsolete compilers.

-Wpointer-arith
Warn about anything that depends on the sizeof a function type or of void . GNU C
assigns these types a size of 1, for convenience in calculations with void * pointers
and pointers to functions.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char * .

-Wwrite-strings
Give string constants the type const char[LENGTH] so that copying the address of
one into a non-const char * pointer will generate a warning. These warnings help at
compile time to find code that can try to write into a string constant, but only if const
in declarations and prototypes have been used carefully.

3.2.3 Assemble Phase Options
This group of assemble phase options is the sub-set of the available assembler options
that are compiler oriented (see the Motorola DSP56300 Macro Assembler Reference

Manual for a complete option list). The default option is to add to the standard search
list the directory that the C compiler writes its output into and then search that directory
first.

-asm string
Pass the argument string directly to asm56300 , the DSP56300 assembler.

Pass a single command line option to the assembler.C:\>
g563c -asm -v file.c

Example 3-30. Pass multiple options to the assembler.

C:\> g563c -asm “-v -OS,CRE” file.c

-c
Compile and/or assemble the source files, suppressing the link phase. This option

3-30 DSP563CCC User’s Manual MOTOROLA

generates corresponding output files suffixed “.cln” . Affected input files are suf-
fixed with “.c” and “.asm” .

3.2.4 Link Phase Options
The options listed below control the link phase of the compilation process. This group of
link phase options is the sub-set of the available linker options that are compiler oriented
(see the Motorola DSP56300 Linker/Librarian Reference Manual for a complete option
list). The -crt and -l options locate the file provided as an argument by searching a stan-
dard list of directories. See Section 3.1 for this directory list. The default option is to add
the C compiler output directory into the standard search list and search that directory
first.

-crt file
Replace the default start-up file (crt0563y.cln) with file. g563c searches the stan-
dard list of directories to find the start-up file. In addition, any directory defined using
the -B option or the G563_EXEC_PREFIX environment variable will be searched.
For additional information, see Chapter 6.

Example 3-31. Compile the C program foo.c with the crt0 file crt.asm.
Notice that the crt0 file crt.asm should be assembled before
use since the option -crt takes .cln file not .asm file.

C:\> dir
crt.asm foo.c

C:\> g563c -c crt.asm
C:\> dir

crt.cln crt.asm foo.c
C:\> g563c -crt crt.cln foo.c

-j string
Pass the argument string directly to dsplnk , the
DSP56300 linker.

Example 3-32. Pass a single option to the linker.

C:\> g563c -j -v file.c

Example 3-33. Pass multiple options to the linker.

C:\> g563c -j “-v -i” file.c

MOTOROLA DSP563CCC User’s Manual 3-31

-lLIBRARY
Search the standard list of directories for a library file named lib LIBRARY.clb . The
linker automatically expands LIBRARY from the option command into lib LIBRARY.-
clb and uses this file as if it had been specified precisely by name.

Example 3-34. Compile the source code using the special dsp application
library. Searching the standard list of directories for a library named
libdspaps.clb.

C:\> g563c -O file.c -ldspaps

-r CTLFILE

Search the standard list of directories for the memory control file CTLFILE to be
passed as an argument to the DSP56300 relocatable linker. This control file will be
used as a table to locate object files sections to be linked. For more detailed infor-
mation, see the -R options and the section on “Memory Control File” in the Motorola
Linker/Librarian Reference Manual.

Example 3-35. Compile the source code main.c and data.c with the
memory configuration described in the control file map.ctl.
Notice that the section main_c of the program main.c is located
at the memory address p:$3000 and the section of data_c of the
data data.c is located at the memory address y:$5000. See
chapter 5 for detailed information on the in-line assembly code
(_ _ asm(...)).

C:\> type map.ctl
 section main_c p:$3000
 section data_c y:$5000

C:\> type data.c
 int data = 0x1; /* test value */

C:\> type main.c
 extern int data;
 main()
 {

int i;

3-32 DSP563CCC User’s Manual MOTOROLA

MOTOROLA DSP563CCC User’s Manual 4-1

Chapter 4
About g563c

4.1 Introduction
The DSP56300 digital signal processors are designed to execute DSP oriented
calculations as fast as possible. As a by-product, they have an architecture that is
somewhat unconventional for C programming. Because of this architecture, there are
characteristics of the compiler, and the code generated by the compiler, that the
programmer must understand in order to take full advantage of the DSP563CCC
programming environment. All programmers, whether they are familiar with DSP or not,
should understand the DSP56300 family architecture before attempting to program it in
C. The following sections provide important information on data types, storage classes,
memory and register usage, and other topics which will be useful to the DSP56300
application developer programming in C.

4.2 Identifiers
An identifier is defined as a sequence of letters, digits and underscore characters (‘_’).
The first character must be a letter or underscore.
DSP563CCC identifier length limits are listed in Table 4-1.

Table 4-1 Identifier Length Limits

4.3 Predefined Preprocessor Macro Names
DSP563CCC supports and expands all ANSI defined macros and four additional
non-ANSI predefined macro names. Table 4-2 lists the macros and their explanation.

4.4 Data Types and Sizes
Due to the word orientation of the DSP56300 family (24-bit words), all data types are

Identifier Storage Class Length

Global/Static (External Linkage) 255
Auto unlimited

4-2 DSP563CCC User’s Manual MOTOROLA

aligned on word boundaries. This has several side effects, one of which is that sizeof(
char) is equal to sizeof(int) .

Table 4-2 Predefined Macro List and Explanation

4.4.1 Integral Data Types
The type char , short int , int , long int and the enumerated types comprise the integral
data types. All but the enumerated types are available as unsigned types as well as
signed by default. The type sizes and ranges are defined in Table 4-3. Note that long
int s are stored in memory with the least significant word occupying the memory location
with the smaller address.

Table 4-3 Integral Data Type Sizes and Ranges

MACRO ANSI Required? Explanation

_ _LINE_ _ YES The line number of the current source line (a decimal constant).

_ _FILE_ _ YES The name of the source file (a character string).

_ _DATE_ _ YES The compilation date (a character string of the form
“Mmm dd yyyy” e.g., Jul 22 1991).

_ _TIME_ _ YES The compilation time (a character string of the form
 “hh:mm:ss”).

_ _STDC_ _ YES Decimal constant 1, indicates ANSI conformation.

_ _DSP563C_ _ NO Decimal constant 1, indicates that code is being generated for
 the DSP56300.

_ _VERSION_ _ NO The GNU version number of the compiler (a character string of
 the form “d.dd.d”).

_ _INCLUDE_LEVEL_ _ NO Decimal constant, indicates the current depth of file inclusion.

_ _MOTOROLA_DSP_ _ NO Defined for all Motorola DSP C compilers.

Data Type Size (words) Min value Max value
char 1 -8388608 8388607
unsigned char 1 0 0xFFFFFF
short 1 -8388608 8388607
unsigned short 1 0 0xFFFFFF
int 1 -8388608 8388607
unsigned int 1 0 0xFFFFFF
long 2 -140737488355328 140737488355327
unsigned long 2 0 0xFFFFFFFFFFFF

MOTOROLA DSP563CCC User’s Manual 4-3

4.4.2 Floating-point Types
In DSP563CCC, the C data types float and double are both implemented as single
precision (see Table 4-4). DSP563CCC does not implement the IEEE STD 754-1985
standard format for binary floating-point arithmetic. A description of the format and a
comparison with the IEEE standard follow.

Table 4-4 Floating-point Data Type Sizes and Ranges

4.4.3 Floating-point Format Description
Figure 4-1 illustrates the floating -point format used in DSP563CCC. Figure 4-1a shows
that the exponent and mantissa occupy consecutive memory locations. Figure 4-1b is in
number line format and shows the fractional nature of the mantissa and the fact that, due
to the nature of a fractional arithmetic mantissa, the numbers between -0.5 and +0.5
(except for zero) are not needed and are therefore reserved. Figure 4-1c shows the
range used by the exponent in this implementation. Notice how this compares with the
IEEE implementation shown in Table 4-6. Figure 4-1d is a combined number line
showing the range of numbers which can be represented in DSP563CCC. The mantissa
$C00000 (-0.5) is not included as the smallest negative floating-point number because
the normalization routine automatically detects the two leading ones and decrements the
exponent which, if at $003FFF, will result in an underflow. Therefore, the smallest
negative mantissa has been set to $BFFFFF (-0.916). Table 4-5 lists the specific
floating-point format information for DSP563CCC and is a tabular version of the
information in Figure 4-1.

4.4.4 Comparison of DSP563CCC and IEEE 754-1985 floating-point.

One major difference is the use of affine arithmetic in the IEEE standard versus the use
of saturation arithmetic in the DSP563CCC format. Affine arithmetic gives separate
identity to plus infinity, minus infinity, plus zero and minus zero. In operations involving
these values, finite quantities remain finite and infinite quantities remain infinite. In
contrast, DSP563CCC format gives special identity only to unsigned zero. This format
performs saturation arithmetic such that any result out of the representable floating-point
range is replaced with the closest floating-point representation. Since the dynamic range
of this format is quite large, it is adequate for most applications.

The IEEE floating-point standard provides extensive error handling required by affine
arithmetic, denormalized numbers, signaling Not-a-Numbers (NaNs) and quiet NaNs. It

Data Type Size (words) Min value Max value
float 2 1.175494351e-38 3.402823466e+38
double 2 1.175494351e-38 3.402823466e+38

4-4 DSP563CCC User’s Manual MOTOROLA

$0
00

00
0

$F
F

F
F

F
F

Positive MantissaNegative Mantissa

$7
F

F
F

F
F

$8
00

00
0

$4
00

00
0

$3
F

F
F

F
F

$B
F

F
F

F
F

$C
00

00
0

-1
.0

00
00

00

-0
.5

00
00

03

0.
00

00
00

0

0.
50

00
00

0

0.
99

99
99

7

0.
49

99
99

7

-0
.5

00
00

00

-0
.0

00
00

03

$0
00

00
1

0.
00

00
00

3

Reserved Reserved

M
an

tis
sa

 V
al

ue
(H

ex
)

(D
ec

im
al

)

Exponent

$7
F

F
F

F
F

$0
00

00
0

$0
03

F
F

F
$0

04
00

0

2-8
19

2

281
92

Reserved

E
xp

on
en

t V
al

ue
(H

ex
)

(D
ec

im
al

)
 (a) Floating-point Data Arrangement in Memory

(b) Mantissa Data Range

Figure 4-1 Mantissa and Exponent Data Range of C floating point

Exponent
Mantissa

Floating-Point Data addr
addr+1

(c) Exponent Data Range

E = $003FFF
M = $800000

E = $000000
M = $BFFFFF

E = $000000
M = $400000

E = $003FFF
M = $7FFFFF

Largest
Negative Number
-1.00 x 2+8192

-0.109 x 10+2817

Smallest
Negative Number
-0.5 x 2-8192

-0.916 x 10-2816

Largest
Positive Number
+0.999 x 2+8192

+0.109 x 10+2817

Smallest
Positive Number
+0.5 x 2-8192

+0.916 x 10-2816
= = = =

0

Note: E = Exponent and M = Mantissa

(d) Mantissa and Exponent Data Range

MOTOROLA DSP563CCC User’s Manual 4-5

postpones the introduction of computational errors by using internal signaling and user
traps to process each exception condition. Computational errors will be introduced by the
application program if the calculation is completed instead of aborting the program. The
DSP563CCC format introduces computation errors when an exception occurs in order to
maintain real-time execution. An error flag (L bit in CCR) is set to inform the application
program that an exception has occurred. This bit will remain set until reset by the
application program. The user can then eliminate the exception by algorithm
modifications.

Table 4-5 Floating-point Format Description

IEEE Format Characteristic DSP563CCC Value

Decimal Value m * 2(e - ebias)

Mantissa 24-bit two’s complement, normalized fractional mantissa.

This gives a precision of approximately 7 decimal digits. A

hidden leading 1 is not implemented in this format (see Fig-

ure 4-1).

Largest Positive Mantissa $7FFFFF

Smallest Positive Mantissa $400000

Floating-point Zero Mantissa $000000

Smallest Negative Mantissa $BFFFFF

Largest Negative Mantissa $800000

Reserved Mantissas $000001 through $3FFFFF and $C00000 through $FFFFFF

exponent 14-bit exponent (unsigned integer, biased by ebias =

$1FFF). Stored as a 24-bit unsigned integer with 10 leading

zeros. The 14-bit exponent used by

DSP563CCC provides a larger dynamic range than IEEE

double precision format.

Largest exponent (biased) $003FFF = 2+8192

Smallest exponent (biased) $000000 = 2-8192

Reserved exponents $004000 through $FFFFFF

Notes: 1. No distinct exponents are reserved for plus infinity, minus infinity, Not-a-Number

(IEEE NaN), minus zero or denormalized numbers as is done in IEEE format.

2. All reserved mantissas are illegal since they represent denormalized mantissas.

3. If the 15th bit is set, exponent overflow has occurred.

4. If the 16th bit is set, exponent underflow has occurred.

4-6 DSP563CCC User’s Manual MOTOROLA

Table 4-6 Comparison of DSP563CCC and IEEE 754-1985

4.4.5 Pointer Types
With DSP563CCC, all pointers are 24-bits in size. When computing addresses with long
arithmetic, only the least significant 24-bits are relevant.

4.5 Register Usage
The DSP56300 family digital signal processor register set is shown in Table 4-7.
DSP563CCC uses all of the registers listed in Table 4-7 with the exception of the
mnaddress modifier registers, which are assumed to be set to the linear addressing
mode.

CHARACTERISTIC 56KCC FORMAT IEEE FORMAT
Mantissa Precision 23 bits 24 bits
Hidden Leading One No Yes
Mantissa Format 24-bit Two’s 23-bit Unsigned

Complement Fraction Magnitude Fraction
Exponent Width 16 bits (14 bits used) 8 bits

Maximum Exponent +8192 +127 (11 bits)
+1023 (11 bits)

Minimum Exponent -8191 -127 (11 bits)
-1022 (11 bits)

Exponent Bias +8191 +127 (11 bits)
+1023 (11 bits)

Format Width 48 bits 32 bits (11 bits)
64 bits (11 bits)

Rounding Round to Nearest Round to Nearest
Round to +/- Infinity
Round to Zero

Infinity Arithmetic Saturation Limiting Affine Operations
Denormalized Numbers No (Forced to Zero) Yes (with Min Exp)
Exceptions Divide by Zero Invalid Operation

Overflow Divide by Zero
Negative Square Root Overflow

Underflow
Inexact Arithmetic

CHARACTERISTIC DSP563CCC FORMAT IEEE FORMAT
Mantissa Precision 23 bits 24 bits
Hidden Leading One No Yes
Mantissa Format 24-bit Two’s 23-bit Unsigned

Complement Fraction Magnitude Fraction
Exponent Width 16 bits (14 bits used) 8 bits

11 bits
Maximum Exponent +8192 +127 (8 bit case)

+1023 (11 bit case)
Minimum Exponent -8191 -127 (8 bit case)

-1022 (11 bit case)
Exponent Bias +8191 +127 (8 bit case)

+1023 (11 bit case)
Format Width 48 bits 32 bits (8 bit case)

64 bits (11 bit case)
Rounding Round to Nearest Round to Nearest

Round to +/- Infinity
Round to Zero

Infinity Arithmetic Saturation Limiting Affine Operations
Denormalized Numbers No (Forced to Zero) Yes (with Min Exp)
Exceptions Divide by Zero Invalid Operation

Overflow Divide by Zero
Negative Square Root Overflow

Underflow
Inexact Arithmetic

MOTOROLA DSP563CCC User’s Manual 4-7

Table 4-7 DSP56300 Family Processor Registers

Caution
The mn address modifier registers are not used directly by
DSP563CCC. Some of these registers are implied whenever any address
registers are referenced either in C library or in C. While assembly code
can access and use these registers, the programmer must restore them to
their previous state ($FFFFFF) before returning control to DSP563CCC.
Failing to do so will cause unpredictable errors when compiled code uses
the address registers.Again, the C compiler assumes that the modifier
registers have been initialized for linear addressing.

The programmer is required to preserve any registers that are directly used in in-line and
in out-of-line assembly language code (see Chapter 5, Mixing C and Assembly
Language). Table 4-8 outlines the compiler’s usage of each register.

Data ALU
xn - Input Registers x1, x0 (24-bits)

yn - Input Registers y1, y0 (24-bits)

an - Accumulator Registers a2 (8-bits), a1, a0 (24-bits)

bn - Accumulator Registers b2 (8-bits), b1, b0 (24-bits)

x - Input Register x (x1:x0 , 48-bits)

y - Input Register y (y1:y0 , 48-bits)

a10 - Input Register a10 (a1:a0, 48-bits)

b10 - Input Register b10 (b1:b0 , 48-bits)

a - Accumulator a (a2:a1:a0 , 56-bits)

b - Accumulator b (b2:b1:b0 , 56-bits)

Address ALU

rn - Address Registers r0-r7 (24-bits)

nn - Address Offset Registers n0-n7 (24-bits)

mn - Address Modifier Registers m0-m7 (24-bits)

4-8 DSP563CCC User’s Manual MOTOROLA

Table 4-8 DSP563CCC registers and Usage

4.6 Memory Usage
The DSP56300 memory can be partitioned in several ways to provide high-speed
operation and additional off-chip memory expansion. Program and data memory are
separate.

By default, the compiler expects that all memory spaces are fully populated and that
several global C variables are defined in the crt0 file (see Chapter 6 —
Software-Hardware Integration for information about customizing the memory
configuration). Figure 4-1 and Figure 4-3 illustrate the default program and data memory
configuration.

4.6.1 Activation Record
An activation record is where a C subroutine stores its local data, saved registers and
return address, etc. A typical DSP563CCC activation record consists of the following
elements and is illustrated in Figure 4-2

1. Parameter data space. Information passed to C subroutines is stored in a
parameter data space which is similar to the local data space (see Figure 4-2).
However, the data is in reverse order and each parameter is referenced via a
negative offset from the stack pointer. Actual parameters are pushed onto the
activation record in reverse order by the calling subroutine.

2. Return address — which is pushed on the DSP’s system stack high (ssh)
register. This is the return address to the calling subroutine. The return

Register Usage

r6 Stack Pointer

r0 - r5, r7 Register promotion by the optimizer

n0 - n7 Code generator temporary

m0 - m7 Used by compiler; keep this as $FFFF

a 48-bit function return value. float, double, or long

Also used to pass first parameter to function.

a1 24-bit return value. Integer or pointer

b 48-bit register promotion by optimizer

Also used to pass second parameter to function.

x, y 48-bit register promotion by optimizer

x1, x0, y1, y0 24-bit register promotion by optimizer

MOTOROLA DSP563CCC User’s Manual 4-9

3. address is not saved for subroutines that have been determined to be a leaf. A
leaf subroutine is one that makes no subroutine calls.

4. Local data space. The location of C variables that have a lifetime that extends
only as long as the subroutine is active and that could not be explicitly
promoted to register storage class by the optimizer.

5. Register spill and compiler temporary space. This area is utilized by the
compiler to store intermediate results and preserve registers.

Note: The stack pointer (r6) generally points to the next available data
memory location, but during the epilogue portion of a function, and
during the execution of some of the code in the library, it’s possible for
the stack pointer to point to the last used location. For this reason, in
ISRs that save items to the stack, the stack pointer should be
incremented before stores to the stack are done, and decremented
back to its initial position at the end of the ISR.

Each subroutine called generates a new subroutine activation record on the run-time
stack. When it returns, the subroutine removes the activation record. The run-time stack
is described in Figure 4-3, Default Data Memory Configuration. The variables in the crt0
file may be changed or relocated by the user. These variables are needed for the C

run-time environment. In general, the linker expects that they will exist somewhere in

Program Area

jsr Fabort

jmp F_ _start

6

2

0

jsr Fabort

jsr Fabort

jsr Fabort

•
•
•

Interrupt
Table

Figure 4-1 Default Program Memory Configuration

4

4-10 DSP563CCC User’s Manual MOTOROLA

memory, but it doesn’t really care where. DSIZE is set by the linker and points to the top
address of the global and static data. DSIZE is used in the crt0 file as the default initial
stack pointer.

Dynamic run-time stack growth is illustrated in Figure 4-4. In this example, there is one
activation record as execution of the sample C code begins. This activation record is
pushed onto the stack and a new activation record is built. When the function returns, the
callee and caller work together to clear the callee’s activation record from the stack. The
register r6 is used both as a stack pointer and as a frame pointer; references to local
data are made with offsets of r6, and r6 marks the next free location on the run-time
stack. This means that a caller’s activation record may be restored by simply restoring
the value of r6.

4.6.2 Global/Static Data

By default, global and static data elements are located below the run-time stack and

Figure 4-2 Typical Activation Record

•
•
•

param N

param 1†

param 2†

return address (ssh)

local data

register spill/temp area

Stack Pointer
r6

Higher Memory

Lower Memory

(1 word)

† The first two parameters param1 and

param2 will be located in the registers a
and b if their size is less than or equal

to 48 bits.

MOTOROLA DSP563CCC User’s Manual 4-11

Global/Static Data

F_ _time (1 word)

Ferrno (1 word)

F_ _stack_safety (1 word)

F_ _mem_limit (1 word)

Figure 4-3 Default Data Memory Configuration

TOP_OF_MEMORY

F_ _break (1 word)

F_ _y_size (1 word)

Heap

Run-Time Stack

X or Y Memory Option Selected L (X:Y) Memory Option Selected

Predefined
in crt0 file

 24-bit
data memory

48-bit
memory

Heap

Run-Time Stack

Global/Static Data

Dsize

Figure 4-4 Run-time Stack Growth

func_1
activation

record

main
activation

record

main
activation

record

main
activation

record

dynamic
link

Execution Begins func_1 called func_1 complete

main()
{

func_1();
}

Sample C code

old frame
pointer

new frame
pointer

4-12 DSP563CCC User’s Manual MOTOROLA

each element is referenced by a unique label that is known at compile-time (see Chapter
6, Software-Hardware Integration for additional information).

4.7 Compiler Naming Conventions
The compiler uses five different internal label formats and a special section naming
format. These six separate formats simplify the procedures to combine hand written
assembly language and C language statements. Use of these formats also makes
compiler generated assembly language listings easier to read. It is strongly
recommended that the programmer avoid using labels with these formats.

L# Local labels. Generally the targets of conditional and
unconditional jumps. Where # is a decimal digit.

LC# String Constant labels. The data memory location for C string
constants, such as “ hello world\n” .

F<identifier> Global C variables, global subroutines, static C variables and
static subroutines. A static C variable or subroutine is one

which is not visible to any C code outside the file in which it has been declared, thus
making it possible to reuse variable names across file
boundaries. Where identifier is the variable or subroutine
name.

F_ _<identifier># Variables static to a function.

ASM_APP_# In-line assembly code delimiters. Required to allow the
programmer to define and use local labels (labels beginning
with an underscore character ‘_’).

<filename_c> Section names. The contents of each assembly language file
generated by the compiler are contained in a unique section .
Where filename is the file name minus any ‘.’ extensions.

4.8 Subroutine Call Sequence
Each time a C language subroutine is called, a strict calling convention is followed. The
subroutine calling sequence is broken down into three sub-sequences that are strictly
defined. The three sub-sequences are caller , callee and return sequence .

Note: This calling convention must be followed when writing in-line or
out-of-line assembly language subroutines that call subroutines written
in C.

MOTOROLA DSP563CCC User’s Manual 4-13

4.8.1 Caller Sequence
The caller portion of the subroutine calling sequence is responsible for:

1. save the following caller-save registers: x1, x0, r0, n0, r1, n1, r4, n4, r5, n5, a,
and b.

2. pushing arguments onto the activation record (in reverse order),

3. actual subroutine call (jsr),

4. stack pointer adjustment.

5. restore the caller-save registers.

Additional caller sequence when the subroutine called will return a struct :

6. allocate space in the caller’s activation record to store the return struct ,

7. pass the return value address in register r7.

4.8.2 Callee Sequence
During the initial portion of the subroutine calling sequence, the callee is responsible for:

1. saving return address (ssh)

2. updating frame / stack pointer,

3. saving the following registers, as required: y1, y0, r2, n2, r3, n3, r7 and n7.

4.8.3 Return Sequence
During the final portion of the subroutine calling sequence, the callee is responsible for:

1. placing the return value in accumulator a.

2. testing the return value. This optimizes the case where function calls are
arguments to conditional operators. The return value need not be tested if the
function is returning void, or a struct.

Additional callee sequence when the subroutine called will return a struct

3. the return value is not passed in accumulator a. A copy of the return struct is
placed into the space allocated in the caller’s activation record and pointed to
by register r7.

4.9 Software Support for Arithmetic Routines

The DSP56300 family provides full hardware support for all 24-bit integer arithmetic
operations, and partial support for 48-bit integer operations. Support for all float/double

4-14 DSP563CCC User’s Manual MOTOROLA

and a portion of the 48-bit long is provided via special software library routines. These
special library routines do not pass arguments to the routines according to the normal
subroutine calling convention for performance reasons.

4.10 Run-time Safety
DSP563CCC provides two methods for providing run-time memory utilization checks.

The first method, heap memory allocation checking, is automatic. The second method,
run-time stack probing, is provided by selecting the command-line argument
-mstack-check.

4.10.1 Memory Allocation Checks
Heap memory allocation checks are provided during every call to the run-time library
routines malloc , calloc and realloc . These automatic run-time checks determine when
the heap is about to collide with the run-time stack. When this occurs, the library routine
returns a NULL pointer and sets the global variable errno to ENOMEM.

4.10.2 Run-time Stack Checks
By selecting the -mstack-check option on the command-line, the compiler is instructed to

generate extra code to watch the stack and heap and detect when the run-time stack is
about to collide with the heap. This may be important when writing code for embedded
applications.

Note: All run-time libraries provided have been compiled/assembled without
the stack checking option. Thus it is possible to have a run-time stack/
heap collision during execution of library routines. The user is free to
rebuild the library routines with -mstack-check as needed.

4.11 Optimization Techniques Implemented
This section provides a brief overview of the optimization techniques currently included
in DSP563CCC. Many machine-independent optimization techniques are used by
DSP563CCC, along with some machine-specific optimizations as well. By default, the
control program g563c enables all levels of optimization (see chapter 3, Compiler
Operation, for command-line options to disable all or part of the optimizer) except
post-pass instruction scheduling.

4.11.1 Register Promotion and Lifetime Analysis
The compiler automatically identifies all variables that are candidates for promotion to
the register storage class. Using standard data flow techniques, lifetime analysis is
performed to determine the best variables for promotion. When variable lifetimes do not

MOTOROLA DSP563CCC User’s Manual 4-15

overlap, more than one variable may be promoted to a single register.

4.11.2 Common Sub-expression Elimination
A Common Sub-Expression, or CSE, is created when two or more statements compute
the same value. When CSEs are detected during data flow analysis, the compiler

eliminates all but one of the computations and propagates the result. A classic example
of a CSE is the array element assignment from another array,

array_1[index + 1] = array_2[index + 1];

where the expression index + 1 is the CSE.

This optimization is especially effective when CSEs become candidates for register
promotion.

4.11.3 Constant Propagation
Propagation of constants is detected during data flow analysis and is simply the
replacement of variable references with constant references when possible. For
example,

a = 3;

/* block of C code with no references to a */

 func_call (a + 709);

becomes:

/* block of C code */

func_call (3 + 709);

Constant folding is the replacement of run-time computations with compile-time
computations.

4.11.4 Dead Code Elimination
During data flow analysis, the compiler detects when the results of C expressions are
never used. When this is detected, the useless C statements are eliminated. This
includes both the initialization of variables that are never referenced in the subroutine
and back to back assignments.

To guarantee code generation for statements that have hidden effects, a volatile type
specifier can be used when declaring variables and functions.

4-16 DSP563CCC User’s Manual MOTOROLA

main()
{

int volatile i = 0, j = 1;
}

The example above generates code to initialize variables i and j even though they are

not used anywhere else. Without the key word volatile , the optimizing C compiler will
eliminate the two local variables because they are not referenced anywhere in the
function main.

4.11.5 Tail Merging
When two or more conditional blocks of code have similar ending sequences, the
sections of code are rewritten to generate similar code only once.

This is a space saving optimization technique. For example:

4.11.6 Strength Reduction
Strength reduction replaces expensive operators with less expensive operators. This
optimization method can be very machine specific. For instance, a popular strength
reduction for many compilers is to replace a multiplication by a constant with a series of
shifts, additions and subtractions. The exact opposite is the case on the
DSP56300, however since a series of left shifts may be replaced with a single multiply by
a constant power of 2.

4.11.7 Loop Invariant Code Motion
Loop Invariant Code Motion is a method in which all C expressions that yield the same
result in each iteration of the loop are moved outside of the loop and are executed once
prior to entering the loop.

4.11.8 Hardware DO Loop Instruction
The DSP56300 family architecture provides a method in hardware to perform zero
overhead looping via the do instruction DSP56300 may exchange the standard
increment/compare/conditional jump sequence with a single do instruction (this is called

if (a > b) if (a > b)

{ {

b = a; becomes b = a;

func(a); }

}

else func(a);

func(a);

MOTOROLA DSP563CCC User’s Manual 4-17

do loop promotion) when the following conditions are met:

1. The body of the loop contains no subroutine calls,

2. The loop is entered from the top, i.e., no goto label entries.

3. No conditional exits from the loop are allowed.

4. The loop’s induction variable is only altered in the body of the loop once per
iteration. Please note that this includes any modifications to the induction
variable within the actual for or while statement.

4.11.9 Loop Rotation
Loop rotation is the elimination of the code generated to check the loop’s entry
conditions. When a loop fails to qualify for do loop promotion i.e., it does not meet the
four conditions listed above, it will qualify for loop rotation if the length of the loop is
known at compile-time, for example:

for (i = 0 ; i < 10 ; i ++)

The loop created with this for statement will always be executed at least one time.
Therefore, the “is i < 10?” test does not have to be run the first time through the loop and
as a result, can be eliminated during the first pass through the loop only. If the result of
the first test cannot be predetermined then it cannot be eliminated. In the example below,
the number of loops is a variable (and therefore cannot be predetermined) that may
equal zero.

for (i = 0 ; i < j ; i ++)

4.11.10 Jump Optimizations
All cases of jumps (conditional and unconditional) to unconditional jumps are eliminated
to create a single jump and target label.

4.11.11 Instruction Combination
Instruction combination replaces several operators with a single, less expensive
operator. This optimization method is very machine specific.

Sequences that are commonly combined by the optimizer include:

1. integer add/multiply becomes a mac instruction,

2. integer subtract/multiply becomes a mac instruction,

3. a memory reference combined with a pointer adjustment becomes an
autoincrement or autodectrement addressing mode. This is very powerful
when combined with register promotion and do loop promotion. For example,

4-18 DSP563CCC User’s Manual MOTOROLA

for (i = 0 ; i < 10 ; i ++)

{

array_1[i] = array_2[i];

}

the for loop becomes a do instruction, the array references are promoted to

address registers and the induction variable is eliminated with array pointer
advancement done via the autoincrement addressing mode.

4.11.12 Leaf Routine Detection
A leaf routine is a subroutine that makes no further subroutine calls. When the compiler
identifies such routines, the prologue and epilogue code are optimized (no save and
restore of the ssh).

4.11.13 Function In-lining
When explicitly requested via the command-line option -finline-function, the compiler will
replace calls to subroutines with an in-line copy of the subroutine if the subroutine meets
these requirements:

1. the subroutine must be a non-volatile leaf function

2. the subroutine must be in the same module

3. the definition must precede use of the subroutine.

Function in-lining eliminates the overhead associated with subroutine calls and provides
additional opportunities for the optimizer and register allocator to further increase code
quality. Function in-lining can also be performed explicitly by the programmer by utilizing
the additional non-ANSI function type specifier _ _inline. By default, many run-time
libraries are in-lined by the compiler.

Note: The function in-lining method can cause program memory requirements
to grow significantly. See Appendix A, Programming Support, for
instructions on disabling library routine in-lining.

4.11.14 Instruction Scheduling / Microcode Compaction
The command line switch -alo causes an assembly language optimizer
(alo563) to be run, using the assembly code emitted by the compiler as input. This
optimizer attempts to compact multiple operations into a single instruction word, while
simultaneously avoiding the pipeline hazards exposed by the address generation unit.
Because this optimizer mixes together instructions from different C language statements,
debugging code compiled with -alo may be more difficult.

MOTOROLA DSP563CCC User’s Manual 5-1

Chapter 5
Mixing C and Assembly Language

5.1 Overview
In cases where the DSP56300 programmer requires direct access to the hardware or
greater performance in the inner-loop of an algorithm, C can be mixed with assembly in
the same program. This chapter describes two methods for combining C and assembly
language source code. The first is the in-line method which is a convenient way to put
assembly code into the compiler output via the non-ANSI C directive _ _asm(). The
second is the out-of-line method, a generic method of combining C and assembly
language generated object files .

Caution
Before mixing C and assembly, read and understand Chapter 4, About
g563c , and the DSP56300 Family Manual . Attempting to write programs
for this DSP without knowledge of the chip and how the compiler utilizes
registers, memory, defines labels, etc. may generate unsatisfactory results.
However, with an understanding of the DSP architecture and how this
implementation of C uses it, programming should be straightforward.

Note: Labels which begin with a double underline (e.g., _ _asm ()) in this manual have a
space between the double underlines to visually separate them. Do not separate the

leading double underlines with a space when coding them (i.e., code _ _asm () as __asm
()).

5.2 In-line Assembly Code
In-line assembly code is assembly code that is inserted inside a C statement in a C
source file. Since assembly code is generated from this C statement directly, the C state-
ment looks like assembly code in the C source and is referred to as in-line assembly
code. All of the assembly code to be generated is visible at the C source-level and it is
often convenient to intermix assembly code with a C source program in this fashion.

Typically, in-line assembly code is used when:

5-2 DSP563CCC User’s Manual MOTOROLA

1. inserting a small amount of assembly code directly into the compiler output i.e., inner loop kernels.

2. writing fast, small assembly language routines to be called by C subroutines. This eliminates the

need to manage data referencing, register saving and allocation, and function call/return code.

The keyword _ _asm is introduced as an extension to the ANSI C language standard.
This keyword is used in a fashion similar to a function call in order to specify in-line as-
sembly code generation.

The in-line assembly statement syntax is:

_ _asm (instruction_template: output_operands: input _operands: reg_save);

where:

1. instruction_template is a string used to describe a sequence of assembly code
instructions that are to be inserted into the compiler output stream. It may specify
arguments, which are listed in output_operands and input_operands. It does this
via a substring called an operand expansion string (OES). An OES starts with a ‘%’.

OES and instruction_template interpretation is described in Section 5.2.1.

2. output_operands are optional operands used to provide specific output information to the compil-

er. Each output_operand string is separated by a comma and should begin with the character ‘=’.

As an example, the output_operand “=A” (cptr) means “the C variable cptr will get its value from

this output operand, which will be in an address register”. See Section 5.2.2 for more details.

3. input_operands are optional operands to provide specific input information to the compiler. Each

input_operand is separated by a comma and may include a C variable. As an example, the

input_operand “A” (cptr) means “the value of this input operand will be taken from the C variable

cptr , and placed in an address register”. Again, full descriptions of the input and output operands

can be found in Section 5.2.2.

4. reg_save specifies registers that are to be explicitly reserved for the _ _asm () statement. The reg-

isters to be saved must be named as strings such as”r1” . Each register is separated by a comma

(see Section 5.2.3 for additional information) The compiler assumes that all data residing in the

reg_save registers will be invalidated by the _ _ asm () statement.

5.2.1 Instruction Template
The first argument of the _ _asm() extension is the instruction template or assembler in-
struction template. This instruction template is mandatory, and describes the line or lines
of assembly language to be placed into the compiler’s assembly language output (see
Example 5-1. in Section 5.2.4). This template is not parsed for assembly language syn-
tax violations and is simply written to the compiler output. As a result, the compiler will
not detect assembly-time errors. These errors will be caught by the assembler.

More than one assembly instruction can be put into a single instruction template by using
the line separator ‘\n’. The line separator, or newline, can be utilized as in a normal C

MOTOROLA DSP563CCC User’s Manual 5-3

statement. The line continuation sequence, a ‘\’ followed by an immediate newline, is
particularly useful when an instruction template contains an assembly instruction that is
too long to fit in one source line (see Example 5-18. in Section 5.2.4). Other C language
character constants such as ‘\t’, ‘\f’, etc. can also be used in the instruction template.

In many situations, it is desirable to use the values of C variables and/or expressions di-
rectly in the instruction template. Since all memory and register accesses are accom-
plished through variables, manipulating memory and registers directly using assembly
code requires knowledge of their locations. Without optimizations, the current value of a
variable will be maintained in memory at a specific address. However, an optimizing C
compiler such as DSP563CCC may retain a variable in a register and perform operations
on that variable without updating the memory location corresponding to the variable be-
tween operations. This enhances the performance of the compiled code but makes ac-
cessing variables in memory risky. In order to guarantee that the correct value of a
variable is returned when it is referenced, a mechanism called operand expansion string
(OES) is provided.

The OES allows a variable to be securely accessed even though its current location is
unknown. The operand expansion string is a substring of the instruction template and be-
gins with the character ‘%’. This string is usually two or three characters long and pro-
vides the compiler with special information about an operand, and how its reference
should be printed. An OES must reference only one C variable or expression, which in
turn must be listed in either one or both operand lists (see Section 5.2.2). The OES is
parsed by the compiler and gives sufficient information to allow the variable to be correct-
ly referenced by the assembly language instruction in the instruction template. Most ex-
amples in Section 5.2.4 include an OES.

5-4 DSP563CCC User’s Manual MOTOROLA

The OES syntax is:

% [modifier] operand_id_number

where:

1. modifier is a single optional character which specifies a particular class of oper-
and. The available modifiers are ‘j’, ‘e’, ‘h’, ‘k’, ‘g’, ‘i’, ‘f’, ‘p’ and ‘q’.

j — an offset register (nx) associated with the corresponding address registers
(rx). Since the offset register is paired with the address register, the allocat-
ed offset register has the same index as the address register (see Example
5-3. in Section 5.2.4).

e — a1 or b1, upper word of the destination registers a or b (see Example 5-4.
in Section 5.2.4).

h — a0 or b0, lower word of the destination registers a or b (see Example 5-5. in
Section 5.2.4).

k — a2 or b2, extension register of the destination register, a or b (see Example
5-6. in Section 5.2.4).

g — Select the 24--bit portion of the 48-bit ALU register (x or y) that is not occu-
pied by data pointed to by the operand id — e.g., if the operand id points to
x0 then x1 is selected and similarly x1→x0, y0→y1, y1→y0 (see Example
5-7. and Example 5-8. in Section 5.2.4).

i — strip the 0 or 1 from the allocated register name i.e., x0→x, b1→b (see Ex-
ample 5-9. in Section 5.2.4).

f — insert the memory space identifier (x or y) for the memory location (see Ex-
ample 5-10. in Section 5.2.4).

2. operand_id_number specifies the operand location in the operand descriptor list (see Example

5-2. in Section 5.2.4). The operand descriptor list is a concatenation of the output operands and

input operands (see Section 5.2.2). The first operand is labeled zero and there can be up to 31 more

operands in the list. More than one instruction template can be used if more than 32 operands are

needed.

In-line assembly code can also be used to insert a label directly into the compiler output.
A label without any white spaces in the in-line assembly code instruction template will
guarantee that the same template label will be in the compiler output (see Example
5-19.). Care should be taken not to use labels that the C compiler generates. Using the
same labels as the C compiler will cause a duplicate label error (see Section 4.7, Compil-
er Naming Conventions).

MOTOROLA DSP563CCC User’s Manual 5-5

5.2.2 Output/Input Operands
The operand list is a concatenation of output and input operands which the OES can
access via the operand_id_number (see Section 5.2.1). Output or input operands consist
of operands separated by a comma (‘,’). Each operand should be associated with a C ex-
pression and its operand constraint described below.

A colon, ‘: ’, is used to separate the assembler instruction template from the first output
operand. A second colon separates the final output operand from the first input operand.
A third colon can be used to separate the input operands from the optional field
reg_save . Two consecutive colons are required when only input operands are needed in
the operand list, leaving us with the empty list of output operands.

The operand syntax is:

“[=]operand_constraint” (C_expression)

where:

1. = differentiates input and output operands. All output operands must use this char-
acter first.

2. operand constraint is a single character that describes the type of resource (memory or register)

that an operand is to be loaded into or read from. Each operand constraint has an optional set of

modifiers that may be applied in the instruction template.

3. C_expression is any valid C expression defined by the ANSI C standard. The C expression can

be either l-value or r-value. Any output operand should use the l-value to specify the memory loca-

tion to store the data.

The available operand constraints are “”A”, “D”, “R”, “S”, “N”, “r”, “i” and “m”. All of
these constraints originate from the DSP56300 architecture: a full understanding of
these constraints requires that the programmer understand said architecture. The
constraints are:

A —One of the Address Registers (rx , where x = 0 through 7; see the DSP56300
Family Manual) will be allocated, (see Example 5-3.) and the C expression will
be promoted to this register. Typically the C expression should be a pointer to
be assigned to an address register. The OES modifier, j, can only be associat-
ed with operand constraint A (see Section 5.2.1).

N —One of the Offset Registers (nx , where x = 0 through 7; see the DSP56300
Family Manual) will be allocated, (see Example 5-3.) and the C expression

will be promoted to this register. Registers allocated to “N” and “A” are not

guaranteed to be paired (i.e. r3 and n3) by the compiler.

D —One of the 56-bit accumulators (a or b which are referred to as Destination
Registers ; see Section 4 of the DSP56300 Family Manual) will be allocated

5-6 DSP563CCC User’s Manual MOTOROLA

(see Example 5-4. through Example 5-6.), and the C expression will be promot-
ed to this register. The OES modifiers ‘e’, ‘h’ and ‘k’ can be associated with op-
erand constraint D (see Section 5.2.1).

R —One of the Input Registers (x0 or y0 which are also called Source Registers;
see Section 4 of the DSP56300 Family Manual) will be allocated to the C ex-
pression (see Example 5-9.). The C expression will be promoted to this register.
The OES modifiers ‘g’ and ‘i’ can only be associated with operand constraint R
(see Section 5.2.1).

r —One of the General Registers (a, b, x0, x1, y0, y1, r0-r5, r7, n0-n5, n7). This
operand constraint is useful when one wants a scratch register that won’t be
used in an instruction other than a move .

S —One of the Input Registers (x0, x1, y0 or y1 which are also called Source Reg-
isters; see Section 4 of the DSP56300 Family Manual) will be allocated to the
C expression (see through Example 5-15.). The C expression will be promoted
to this register. The OES modifiers ‘g’ and ‘i’ can only be associated with oper-
and constraint S (see Section 5.2.1).

i —An immediate constant; a constant is generated in the form of #constant if no
modifier is specified.

m —The C expression will be referenced in memory (see Example 5-10.). The
DSP56300 has three memory spaces: y:, x: and p: , but the C compiler will only
use the y memory space for this expression. The OES modifier ‘f’ can only be
associated with operand constraint m (see Section 5.2.1).

number —Inherit all memory or register characteristics of the operand indicated by
the operand id number (see Example 5-2.). This constraint is usually used for
read/write operands which are declared by using the same C variable as both
the input and output operand.

The operand is sometimes referred to as a read-only operand if it is used only as an in-
put (see Example 5-12.). It is called a write-only operand if it is used only as an output

(see Example 5-13.). In most cases, the operand is used as both an input and an output
operand (see Example 5-14. and Example 5-15.). In these cases the operand must be
de-

scribed as both. Since output operands should be listed first, the operand id number is
determined when the output operand is declared. The id number will be used as the op-
erand constraint of the associated input operand.

MOTOROLA DSP563CCC User’s Manual 5-7

5.2.3 Explicit Register Saving
It is possible to manually perform register allocation. This may simplify the process of
converting an existing body of DSP56300 assembly language subroutines to in-line as-
sembly code. The programmer need only identify each register explicitly referenced in
the assembly code and list them in the reg_save argument region (see Section 5.2). This
guarantees that the compiler won’t expect values to be preserved in these registers
across _ _asm() calls. Modification of the register r6 is prohibited in the assembly code
because it is reserved for the C compiler during run-time, where r6 is the stack pointer. n
registers are used by the compiler as temporary registers and m registers are assumed
to be set for linear addressing. As a result, these registers do not need to be saved un-
less the programmer uses them in assembly code. If they are used in assembly code,
they should only be used as local variables. If an m register is to be modified, then its
original value must be restored by the programmer.

Explicit register saving is done by specifying the registers to be saved. A string is used to
specify each register.

5.2.4 In-line Assembly Code Examples
The examples in this section illustrate the practical application of the _ _asm() extension.
The main purpose of this section is to show how to write in-line assembly code. Since
these examples are intended to illustrate the information presented earlier in this chap-
ter, references to the appropriate subjects have been included.

Example 5-1. illustrates the use of the in-line assembly code instruction_template. Since
this in-line assembly code directly clears register a, the programmer should check to be
sure that the contents of a are not needed. The correct way of doing this would be to in-
clude “a” in the reg_save section of the _ _ asm () statement.

Example 5-1. Instruction_template: The following are a few examples of
how to utilize the instruction template with in-line assembly code.
This feature allows the generation of any valid assembly instruction
and it is probably the most frequently used feature with in-line
assembly coding.

_ _asm(“clr a”); /* clears the register A */
_ _asm(“move #$10, a2”); /* load the register A2 with the hex value 10 */
_ _asm(“\nABC equ $ffc4”); /* equate the symbol ABC to $ffc4 */

A pseudo operand will be used to illustrate use of the OES operand id number. The
pseudo operand functions as an input or output operand. Example 5-2. uses five pseudo
operands: V, W, X, Y and Z each of which is referenced by operand ids 0, 1, 2, 3 and 4,
respectively. The pseudo operands are used as in the OES “%0”, “%1”, “%2”, “%3” and
“%4”. Table 5-9 shows which operands in Example 5-2. are input or output operands.

5-8 DSP563CCC User’s Manual MOTOROLA

Example 5-2. Instruction template with operand_id: In order to illustrate
how to use output or input operands, pseudo operands V, W, X, Y,
and Z are used. The operand_id listed in this example can be used
as part of an instruction_template.

_ _asm(“instruction_template” : V, W, X : Y, Z);
Examples 5-3 through 5-11 illustrate the use of OES modifier (see Section 5.2.1).

Table 5-9 Output and Input Operands for Example 5-2.

Example 5-3. OES modifier j: The following in-line assembly code is used
to generate executable assembly code. Notice that the actual
register selection is totally dependent on the C compiler but the
register selected (r3 in this example) is guaranteed to be related to
the C expression used (in this case cptr, see Section 5.2).

In-line Assembly code:

char *cptr;
_ _asm(“move (%0)+%j0”::“A”(cptr));

Assembly Code Generated:

move (r3)+n3

Example 5-4. OES modifier e: The modifier e can be used to generate the
assembly code below because a1 is the upper part of register a.

In-line Assembly code:

int foo;
_ _asm(“move #$ffff,%e0”:“=D”(foo));

Assembly Code Generated:

move #$ffff,a1

Example 5-5. OES modifier h: The h modifier can be used to generate the

MOTOROLA DSP563CCC User’s Manual 5-9

following assembly code because a0 is the lower part of register a.

In-line Assembly code:

int foo;
_ _asm(“move #$ffff,%h0”:“=D”(foo))

Assembly Code Generated:

move #$ffff,a0

Example 5-6. OES modifier k: The k modifier can be used to generate the
following assembly code because a2 is the extension portion of
register a.

In-line Assembly code:

int foo;
_ _asm(“move #$ff,%k0”:“=D” (foo));

Assembly Code Generated:

move #$ff,a2

Example 5-7. OES modifier g: Swap the most significant 24-bit portion and
the least significant 24-bit portion of 24-bit registers x and y to allow
the OR instruction to operate on an entire 24-bit register.

/*
 * The following assembly code could be generated (note that

the
 * optimizer may vary the code actually generated).

move x1,a1
move x0,x1
move a1,x0

 *
 * The variable foo can be allocated to either x0, x1, y0, or y1
 * by using the operand constraint S. The swap operation can
 * be applied to the register allocated to the variable foo by
 * using the following in-line assembly code.
 *
 */
main()
{
 int foo;
 _ _asm volatile ("move %g0,a1" : : "S" (foo));
 _ _asm volatile ("move %0,%g0" : "=S" (foo) : "0" (foo));

5-10 DSP563CCC User’s Manual MOTOROLA

 _ _asm volatile ("move a1,%0" : "=S" (foo));
}

Example 5-8. OES modifier g: A bit checker program looks to see if any bit
in the 48-bit registers x or y is set. The example code looks to see
whether the variable foo , which is placed in either the x or y register,
is zero or contains a set bit. The result is stored in the register a1. If
register a1 is not zero then foo has one or more set bits.

/*
 * The variable foo can be allocated to either the x or yregister

by using
 * the operand constraint S. The or instruction only operates

on 24-bit
 * registers so that to OR the x register with another register,

x1 must
 * be ored separately from x0. The same applies for the y

register.
 */
main()
{
 long volatile foo;

 _ _asm volatile (“clr a”);
 _ _asm volatile (“or %0,a” :: “S”(foo));
 _ _asm volatile (“or %g0,a” :: “S” (foo));
}

Example 5-9. OES modifier i: The modifier can be used to generate the
following assembly code because x is a register without a 0 or 1
portion.

In-line Assembly code:

int foo;
_ _asm(“move l:<$0,%i0” : “=R”(foo));

Assembly Code Generated:

move l:<$0, x

Example 5-10. OES modifier f: The f modifier can be used to generate the
following assembly code. Assuming that the memory location of the
variable “foo” is 233, then the memory space indicator “y: ”will be

MOTOROLA DSP563CCC User’s Manual 5-11

automatically generated by the f modifier.

In-line Assembly code:

int foo;
_ _asm(“move #$ff,%f0”: “=m” (foo));

Assembly Code Generated:

move #$ff,y:233

Example 5-11. Input Expression / Output Expression: This in-line
assembly code uses the pseudo assembly mnemonic
“asm_instruction” and refers to two C expressions:
output_expression and input_expression. This example illustrates
how to interpret the operand constraint (see Section 5.2.2) and
operand id (see Section 5.2.1 and Example 5-2.). The example
implies that the C expression output_expression is expanded with
constraint D and is an output of the assembly code instruction
asm_instruction. Similarly, the C expression input_expression is
expanded with constraint S and used as an input to the assembly
code instruction asm_instruction.

_ _asm(“asm_instruction %1,%0” : “=D” (output_expression) : “S” (input_expression));

Example 5-12. Read-Only Operand: This in-line assembly code uses the
pseudo assembly mnemonic “asm_instruction” and uses
input_expression as a read-only operand.

_ _asm(“asm_instruction %0” :: “S” (input_expression));

Example 5-13. Write-Only Operand: This in-line assembly code uses the
pseudo assembly mnemonic “asm_instruction” and uses
output_expression as a write-only operand.

_ _asm(“asm_instruction %0” :“=D”(output_expression));

Example 5-14. Read-Write Operand: An addition is programmed using
in-line assembly code and the C expression result is used as a
read-write operand. The variable, foo, is used as a read only
operand. Notice that operand constraint ‘0’ was used to reference
the add instructions second source operand which is also the
destination operand (see the DSP56300Family Manual — Appendix

5-12 DSP563CCC User’s Manual MOTOROLA

A for the syntax of the add instruction).

int foo, result;
_ _asm(“add %1,%0” : “=D” (result) : “S” (foo), “0” (result));

Example 5-15. Read-Write Operand: The same result will be obtained as in
Example 5-14.. Notice how the operand id is changed according to
the placement of the C variables.

int foo, result;
_ _asm(“add %2,%0” : “=D” (result) : “0” (result), “S” (foo));

Example 5-16. Multiple Instruction — Single-Line: An in-line assembly
program which places a value (e.g. $709) in register a and negates
the result is written in one line. This one line will generate two lines
of assembly code in the C compiler output.

_ _asm(“move #$709,a\n neg a” : : “a”);

Example 5-17. Multiple use of _ _asm(). This trivial example and Example
5-18. are done in-line with the compiler performing all register
allocation and all operands are referenced via C expressions. The
method used to write this in-line assembly program is to use an _
_asm() statement for each assembly language instruction.

int read_n_add (int data, int* ptr_a, int* ptr_b)
{

int tmp_a, tmp_b;
_ _asm (“move x:(%1),%0” : “=S” (tmp_a) : “A” (ptr_a));
_ _asm (“move x:(%1),%0” : “=S” (tmp_b) : “A” (ptr_b));
_ _asm (“add %1,%0” : “=D” (data) : “S” (tmp_a), “0” (data));
_ _asm (“add %1,%0” : “=D” (data) : “S” (tmp_b), “0” (data));

 return data;
 }

Example 5-18. Line Separation. This in-line program is functionally identical
to Example 5-17. except that line separation is used to insert the
entire assembly language program. Notice how much easier it is to

MOTOROLA DSP563CCC User’s Manual 5-13

read the program.

int read_n_add (int data, int* ptr_a, int* ptr_b)
{

int tmp_a, tmp_b;
_ _asm (“\
move x:(%3),%1 \n\
move x:(%4),%2 \n\
add %1,%0 \n\
add %2,%0“ : “=D” (data), “=S”, “=S” : “A” (ptr_a), “A” (ptr_b));

 return data;
 }

Example 5-19. Instruction Template Label: The following in-line assembly
code which generates the label “foo” uses a return character “\n” to
insure that there is no white space in front of the label.

_ _asm(“\nfoo”);

5.2.5 Controlling Labels Generated by the Compiler
Using the _ _asm() keyword, it is possible for the programmer to override the compilers
label generation conventions for subroutines and global variables. In general, this prac-
tice is discouraged. This may be useful for:

1. calling assembly language subroutines,

2. calling C subroutines from assembly code,

3. referencing assembly language global variables from C,

4. referencing global C variables from assembly code.

5.2.5.1 Calling Assembly Subroutines
Calling a subroutine or function requires using a label that points to the subroutine or
function. The C compiler uses a predetermined labeling convention (see Section 4.7). In
order to call assembly subroutines labeled in an arbitrary fashion, _ _asm() can be used
to overwrite the C convention label with an arbitrary label.

To illustrate how to use the _ _asm directive for this purpose, Example 5-20. reads the
data at x memory location $100 and y memory location “X+2”. For test purposes, the y
memory space is filled with the integer sequence 0 through 9. The printf() statement
prints the data returned from the function calls ValOfX(100) and ValOfX(X+2). This func-
tion was written in assembly code and resides in another file.

5-14 DSP563CCC User’s Manual MOTOROLA

By using the statement

extern int ValOfX() _ _asm(“ReadX”);
all C compiler generated function labels for ValOfX() are replaced by the label ReadX.

Example 5-20. Calling assembly from C. This C program (called test.c) can
be used to examine the data in y memory by calling the assembly
routine “ReadX”.

C:\> type test.c

#include <stdio.h>
extern int ValOfX() _ _asm(“ReadX”);
unsigned X[] = {0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,0x9};
main()
{
 printf(“<%x><%x>\n”, ValOfX(100) , ValOfX(X+2));
}

The following two command lines test Example 5-20..

C:\> g563c test.c memread.asm
C:\> run563 a.cld

5.2.5.2 Calling C Subroutines from Assembly Code
Any C function can be called from an assembly program to test the assembly program
data or utilize built-in standard C libraries such as floating-point operations. Calling a C
subroutine from assembly code requires using the C subroutine calling convention (see
Section 4.8 and Section 5.4.4) and matching the C function labels. The in-line-assembly
directive, _ _asm() , can be used as shown in Example 5-21. to change the C program la-
bels.

Example 5-21. Calling C from assembly. This C subroutine (called
C_print.c) uses the standard C library routine, printf() , to print the
input argument as a string.

C:\> type c_print.c

#include <stdio.h>
int C_printf() _ _asm(“print”);
C_printf(char *msg)
{
printf(“%s\n”, msg);
 }

MOTOROLA DSP563CCC User’s Manual 5-15

Example 5-22. Calling C from assembly. This assembly program (called
greeting.asm) prints the message “greeting: hello, there” on the
screen. It uses the C subroutine printf () , to print this message.
Notice that the assembly program name is Fmain because the
control program, g563c , uses the default start-up file crt0563y.cln .
crt0563y.cln uses Fmain to start up the main program

C:\> type greeting.asm
section greeting
org y:

 LC0 dc “greeting: hello,there.”,$00
org p:
global Fmain

Fmain move ssh,y:(r6)+
move #LC0,a
jsr Fprintit
move y:-(r6),ssh
rts
endsec

The following two MS-DOS command lines can be used to test the program:

C:\> g563c greeting.asm c_print.c
C:\> run563 a.cld

greeting: hello, there.

5.2.5.3 Referencing Assembly Global Variables from C
The data in assembly language programs must be accessible to C programs to take full
advantage of the DSP56300 family architecture since the C language cannot access all
of the DSP56300 features directly. One way to access this data is through global data
which can be defined in assembly language and accessed in the C program environ-
ment. This feature is particularly useful to allocate modulo buffers. Detailed information
on modulo buffers can be found in the DSP56300 Family Manual.

Example 5-23. Generate data with assembly language. The data file,
sqtbl.asm, is generated in assembly language and consists of a

5-16 DSP563CCC User’s Manual MOTOROLA

Example 5-24. series of squares.

C:\> type sqtbl.asm

section data
global table
org y:

 table dc 0,1,4,9,16,25,36,49,64
endsec

Example 5-25. Access data with C. This test program (called test.c) prints
the value of 52 on the screen.

C:\> type test.c

#include <stdio.h>
extern int SQUARE[] _ _asm(“table”);
main()
{
 printf(“square of %d is %d\n”, 5, SQUARE[5]);
 }

The following two command lines for Example 5-25. test the two programs sqtbl.asm and
test.c.

C:\> g563c test.c sqtbl.asm
C:\> run563 a.cld

5.2.5.4 Referencing Global C Variables from Assembly Language
One DSP563CCC feature is that global data in a C program is available to assembly lan-
guage programs. This feature is particularly useful when the data to be processed by an
assembly language program is generated by the C program.

Example 5-26. Generate data with C. data.c contains the coefficients of an
average filter which takes the average of the last four input data.

C:\> type data.c
int Cwaddr[] _ _asm(“cwaddr”);
int Ccaddr[] _ _asm(“caddr”);
int NTAP _ _asm(“N_1”);

int Cwaddr[4];
int Ccaddr[] = {0x2000, 0x2000, 0x2000, 0x2000 };
int NTAP = 4;

MOTOROLA DSP563CCC User’s Manual 5-17

5.2.6 Specifying Registers for Variables
DSP563CCC allows the programmer to identify a specific register for local and global
variables, but due to the limited number of registers available, this may not have a posi-
tive effect on run-time performance. With this in mind, this feature should be used spar-
ingly.

Both global and local variables are candidates for promotion to specific registers and
syntactically they look the same:

register int *ptr _ _ asm(“r3”);

By specifying a specific register for a local or global variable, the programmer is reserv-
ing the register for the variable’s entire scope (global for the entire program, local for the
function in which they are declared). This means that the compiler will not use the regis-
ter for any other purpose and the register will not be saved and restored by the C func-
tion call.

5.2.7 Optimizer Effects on Code
All in-line assembly code is visible to the optimizer and as such it is possible that the op-
timizer will convert it into a new form or eliminate it entirely if it is determined to be un-
reachable or dead. In order to guarantee that code is not removed by the optimizer, the
ANSI keyword volatile must be used.

_ _ asm volatile (…);

5.3 #pragma Directive
The purpose of this section is to explain the proper techniques for manipulating the
assembler’s run-time and load-time counters while programming in the C language.

Currently the Motorola DSP assemblers allow the programmer to specify both a run-time
location and a load-time location for any object; however, there is no corresponding
concept within C. The generic #pragma facility is used to add this capability rather than
extending the C language. Users now have complete freedom in specifying both the
run-time and load-time counters for any static or global object. These directives may be
used with either code or data.

This flexibility is achieved by allowing the user to modify any of eight counter strings
maintained by the compiler — two for each memory space: x, y, l x and p. When an
object is or defined, the current values of those counter strings are bound to that object.

Syntax for the pragma directive is

#pragma counter_string argument

C function or data storage definition

#pragma counter_string

where

5-18 DSP563CCC User’s Manual MOTOROLA

5. the two #pragma statements must encase the entire definition.

6. counter_string in the first #pragma specifies which phase (run or load time)
and memory space is to be affected. It can be x_run , y_run , l_run , p_run ,
x_load, y_load , l_load , or p_load .

7. the argument in the first #pragma is the string that will be passed as either the
runtime or load-time argument to the org assembler directive. This address,
which is optional, is of the form x:address_value where x is the counter
associated with x memory, and address_value is the value to be initially
assigned to that counter. As an example, p:$300 might be used for the counter
string p_load .

8. the C function or data storage definition is a declaration that reserves storage.

9. The second counter_string should be the same as the first counter_string and
will return the memory specification to the default setting.

If and only if the memory space of the counter string in the #pragma directive matches
the memory model of the C compiler, then the compiler will insert an assembly org

statement of the form:

(1) org a:runtime_address,b:loadtime_address

or

(2) org a:runtime_address

where “a” is the run time counter and runtime_address is the optional initial value for
that counter, as specified in the “argument” to #pragma .

“b” is the load time counter and loadtime_address is the optional initial value for
that counter, as specified in the “argument” to #pragma .

The following two examples illustrate that the load time counter is optional. See
the section on the ORG statement in the Motorola DSP Assembler Manual for a
complete description and list of options.

Notice that the pragma directive run-time counter string will only affect the run-time
address and the pragma directive load-time counter string will only affect the load-time
address.

MOTOROLA DSP563CCC User’s Manual 5-19

As a simple example, the following C segment:

#pragma x_load p:$100
int coeff[5] = {0x19999a, 0x200000, 0x266666, 0x2ccccd, 0x333333};
#pragma x_load

produces the following assembly language code:

global Fcoeff
org x:,p:$100

Fcoeff
dc 1677722
dc 2097152
dc 2516582
dc 2936013
dc 3355443

Notice that the second #pragma directive will remove the effect of the first memory
specification, i.e., #pragma x_load p:$100 ; any following data definitions would have x
memory load time locations, as is the default.

The above example code will be loaded at p memory location $100, and it should be
copied to the x memory space upon system start-up. When burning a PROM, often only
one memory space is desired to be used, as an example, p memory space, so that only
one PROM is enough for both data and program. In such case, both the data and the
program will be burned in the PROM and the data should be moved to the data memory
space upon system start-up.

Let’s assume that the coefficients of the above example are desired to be in the program
space when burning the PROM. Then the following C segment

#pragma x_load p:$100
int coeff[5] = {0x19999a, 0x200000, 0x266666, 0x2ccccd, 0x333333};
#pragma x_load

5-20 DSP563CCC User’s Manual MOTOROLA

produces the following assembly language code:

global Fcoeff
org x:,p:$100

Fcoeff
dc 1677722
dc 2097152
dc 2516582
dc 2936013
dc 3355443

The above assembly code will be loaded into the p memory space at p:$100 for the
PROM burning, and it should be copied to the x memory space before the actual
program is executed. Manipulating the assembler’s run-time and load-time counters
requires a thorough understanding of the underlying assumptions about memory layout,
which are made by the compiler (see Chapter 6). Incorrect use of this feature may cause
compile-time, link-time and even run-time errors.

5.4 Out-of-line Assembly Code
Out-of-line assembly code is assembly code written in a separate source file that is
called from a C program. Separating the assembly code and C code in this way provides
a powerful and flexible interface to the DSP56300 family architecture. This out-of-line
method may be used to convert existing assembly subroutines, or new subroutines com-
pletely in assembly language may be written. The key advantage of out-of-line assembly
code is that it provides a complete assembly programming environment for the
DSP56300 family whereas the in-line assembly code must follow the C programming en-
vironment rules.

Writing out-of-line assembly code requires a complete understanding of the C Cross
Compiler and the DSP56300 family architecture. For out-of-line assembly code to be
callable from a C program, the following five basic elements should be included in the as-
sembly source file in sequence.

1. C subroutine entry code (prologue code)

2. Save all registers to be used

3. Function core

4. Restore all registers used

5. C subroutine exit code (epilogue code)

In order to illustrate the steps listed above, the out-of-line assembly code template is de-
scribed first and each element of the template is then explained in detail. After reviewing
the five elements, some optimization techniques are discussed.

MOTOROLA DSP563CCC User’s Manual 5-21

5.4.1 General Template
The following template is a generic form used to make the C function “foo”. The actual
code for the prologue and epilogue is shown but the “Save all registers to be used”,
“Main Program”, and “Restore all registers used” are listed as comments because the
actual code depends on the function.

global Ffoo ; prologue:
Ffoo ; sets up entry point (C function address).

move #k,n6 ; k is the amount of local space needed.
move ssh,y:(r6)+ ; save the return address.
move (r6)+n6 ; allocate local stack space of size k.

; Save all registers to be used
; Function body.
; Restore all registers used

move #k+1,n6
move (r6)-n6 ; deallocate local stack space, set ccr flags.
tst a
move y:(r6),ssh ; get the return address.
rts

5.4.1.1 Prologue
The first two lines of the prologue make the assembly program visible to the C program
so that the subroutine or function is callable from the C program. In this case, any one of
the following C statements can be used to access out-of-line assembly code.

foo();

x = foo();

x = foo(arg1, arg2, arg3);
The first function call assumes that the C function does not use any arguments and does
not return any values. The second only returns a value which is the same data type as
the variable x. The last call assumes that the C function uses the three arguments: arg1 ,
arg2 and arg3 and then returns the value x.

The rest of the prologue saves the return address and allocates any needed stack space
for the function. Increasing the stack pointer value will protect local data from corruption

by interrupt routines. The return address is saved when the jsr instruction pushes the

5-22 DSP563CCC User’s Manual MOTOROLA

program counter onto the high 16 bits of the system stack (ssh).

5.4.1.2 Save all registers
All registers used in the function should be saved before the function alters them. This
step is the second element of the template — “Save all registers to be used”.

In order to save the registers, r6 is used as a stack pointer. The stack grows upward and
the current stack pointer (r6) points to the next element above the top of stack (except
during the epilogue portion of a function, and during some of the routines in the library,
where it can sometimes point to the last used element). The following statement saves
one register to the top of stack and sets the stack pointer to the next available stack loca-
tion.

move r1,y:(r6)+
Since saving and restoring the registers are the subroutine’s responsibility, the order of
saving the registers should be in accordance with their restoration. The restore process
should be exactly the reverse order of the register saving sequence.

5.4.1.3 Main Program
A typical C function accesses the parameters passed, executes using the parameters
and returns a value. Passing parameters is done by pushing them onto the stack. When
a function is called, the first parameter is directly underneath the stack pointer (see Sec-
tion 4.6.1). The parameters are pushed by the caller in reverse order. For example, the

following statement should be used to move the first single word parameter to register
r3.

An exception to the above rule is when either the first or both the first and second param-
eter to a function will fit in accumulators. If the first parameter to a function is an int, long,
float, pointer or double, then it will be passed in a. If the second parameter is also of one
of those types, then it will be passed in b. If not, then the first and/or second paramter will
be passed in the same manner as all subsequent parameters: on the stack.

move y:(r6-z-2),r3 ; z is local stack area size.

Assuming the first three parameters on the stack are one word long, the following state-
ments move the second and third parameters on the stack to registers r1 and r2, respec-
tively.

move y:(r6-z-3),r1
move y:(r6-z-4),r2

MOTOROLA DSP563CCC User’s Manual 5-23

5.4.1.4 Restore all registers
The stack pointer is needed to restore the registers. The following code will restore one
register. At this point in the function’s execution, the stack pointer points to the location
above the last saved register, hence the pre-decrement.

move y:-(r6),r1 ; restore

The restoring procedure can be simplified if more than one register is to be restored. Re-
storing registers r1, r0 and r3 can be done by the statements below.

move (r6)-
move y:(r6)-,r1
move y:(r6)-,r0
move y:(r6),r3

After the function has finished, a return value can be passed to the caller. Any
48-bit or 24-bit value must be returned through register a. If the return value is larger
than 48-bits, then the compiler allocates the proper amount of buffer space and register
r7 becomes the pointer to this buffer space upon callee execution. It is the callee’s re-
sponsibility to copy any return values from the buffer whose address resides in register
r7. This is the method used for returning struct s.

5.4.1.5 Epilogue
The out-of-line template epilogue is the reverse of the prologue. The epilogue restores
the stack pointer and the return address. In addition, register a is tested to update the
ccr flags. This testing is a part of the C compiler code generation feature and should be
included in functions that return values in the a register (see Section 5.4.5 for optimiza-
tion).

5.4.2 Global C and Static Variables in C
The global C variables are accessed using labels generated by the C compiler. Any vari-
ables that are static to an assembly language subroutine will be accessed the same way.
These variables are placed into memory at compile-time and are referenced symbolically
according to the labels automatically generated by the compiler. However, it is possible

to override the default labels by using the _ _asm() keyword as explained in Section
5.2.5.

For example, using the default labeling convention, the global integer, Ginteger which
can be declared within the C statement extern int Ginteger ; is loaded into the input reg-
ister x0 in assembly code as follows:

move x:FGinteger,x0

5-24 DSP563CCC User’s Manual MOTOROLA

When declaring C global variables in an assembly language file, the programmer must
be careful to follow the label generating convention or use the _ _asm() keyword to re-
port to the compiler that the labeling convention has been changed. In both cases, the
assembler directive global is used to export the labels to the C files. DO NOT use the
XDEF/XREF pair of directives. NOTE that it is the programmer’s responsibility to allocate
space for the global variables declared in this manner. In the example below, this is done
with the assembler directive dc . Also, ANSI C requires that all global variables be initial-
ized to zero if they are not explicitly initialized.

Example 5-27. Global Label in Assembly Language. This example shows
assembly code that defines a global integer (named FGinteger)
which is normally accessed as Ginteger in the C environment and
FGinteger in the assembly programming environment.

org y:
global FGinteger

FGinteger
dc $0

Example 5-28. Global Variable Declaration. This is the C code equivalent
to Example 5-27. which defines the global integer Ginteger.

int Ginteger;

Example 5-29. Changing a Global Label. This example shows C code that
generates a global integer (Ginteger) which is accessed as
Ginteger in both the C environment and the assembly programming
environment.

int Ginteger _ _asm(“Ginteger”);

Which will appear in assembly language code as:

Ginteger dc $0
global Ginteger

5.4.3 Using Run-time Stack for Local Data
The run-time stack may be used when the programmer requires a temporary data space
for automatic style variables — i.e., local variables in subroutines. Using the run-time
stack requires additional steps in the prologue and epilogue sections. It is the subrou-
tine’s responsibility to automatically allocate and deallocate the stack at run-time.

In the prologue, an extra step is required to save the run-time stack space. Keeping in

MOTOROLA DSP563CCC User’s Manual 5-25

mind that the stack pointer should always point to the next available stack location, the
stack space is allocated by advancing the stack pointer by the amount of space required.
One way to allocate this space is shown in the Example 5-30..

Example 5-30. Run-time stack allocation: This code segment can be
inserted in the general template prologue for out-of-line assembly
code. Notice that “size” in the move statement below should be
replaced with the appropriate constant.

move #size ,n6;the stack size needed
nop ; wait for pipeline delay.
move (r2)+n2 ; allocate the run-time stack for locals

Referencing the data space can then be accomplished using negative offsets from the
stack pointer or via initialized address registers. There are many alternatives to these
methods but they are all similar.

In the epilogue, an extra step is required to restore the stack pointer — i.e., deallocate
the run-time local stack. This is simply the reverse of the allocation process in the pro-
logue.

Example 5-31. Run-time stack deallocation: This code segment can be
inserted in the general template epilogue for out-of-line assembly
code. Notice that “size” in the move statement below should be

Example 5-32. replaced with the appropriate constant.

move #-size ,n6 ; the stack size used before
nop ; wait until n6is available.
move (r6)-n6 ; deallocate the run-time stack

There are many ways to do this. One simple optimization would be to advance the
n6load instruction in the program to eliminate the nop.

5.4.4 Calling C Routines
C routines are routines that are callable by a C program and may be written in either C or
assembly language. When writing assembly language subroutines, it may be necessary
to call library routines that have been provided or that have been written by the program-

mer — e.g., a call to sin() or printf() . In order to do this, the programmer must follow 3
steps:

1. Push arguments onto the run-time stack in reverse order.
NOTE: If either the first argument (or both the first and second argument) may be passed in an ac-
cumulator, it (they) must be passed that in an accumulator rather than on the stack.

2. Make the subroutine call.

3. Restore the stack pointer.

5-26 DSP563CCC User’s Manual MOTOROLA

5.4.5 Optimization Techniques
The general template for out-of-line assembly code provides a clean template to build C
callable functions. However, the DSP56300 family microprocessor chips have powerful
features such as multiple instruction execution (multiply and accumulate) and parallel
data move operations that may allow additional optimization. After constructing the
out-of-line assembly code from the general template, some hand-optimization can be
performed by combining several assembly statements.

Information about these optimization techniques can be obtained from the DSP56300
Family Manual. Some optimization techniques which are related to the C compiler are
discussed in this section but additional optimization can be achieved using the architec-
tural features described in the user’s manual.

The return address (ssh) was saved in the out-of-line assembly code prologue but it is
only required when a function calls another function. A function is called a leaf function if
it does not call any other C function. In leaf functions, the return address does not have
to be saved because the hardware stack will not overflow on subsequent jsr instructions.

The test statement “tst a ” in the epilogue can be eliminated if the function does not return
any value. The test statement may be required due to the C compiler’s optimization fea-
tures since it provides condition flags for an if statement in a function call. For example, if

the out-of-line assembly function foo() is used in the statement if (foo()) { ... } , then the C
compiler will not generate code to test the return value when a jne instruction is issued.
This is primarily because the C compiler uses the condition flags which were generated
at the end of the epilogue of foo() .

A variety of optimizations can be achieved by combining the move instructions and code
to utilize parallel moves. These and other DSP56300 specific optimizations can dramati-
cally improve the quality of the application specific library routines. A careful review of
the DSP56300 Family Manual will be worthwhile for efficient library development.

MOTOROLA DSP563CCC User’s Manual 6-1

Chapter 6
Software-Hardware Integration

6.1 Overview
This chapter explains how the run-time environment may be changed and provides exam-
ples of some changes and their effects. The run-time environment provided with the com-
piler assumes, as a default, that the simulator is the target execution device. Several
aspects of the default run-time environment must be altered in order to adapt the compiler
to work with a custom hardware configuration.

The files which are alterable are discussed and classified according to effect. Aspects of
the run-time environment such as bootstrapping, interrupts and memory management are
addressed individually.

6.2 Run-Time Environment Specification Files
The run-time environment is specified by three assembly language files:
crt0563[xyl].asm , signal563[xyl].asm and setjmp563[xyl].asm, where x, y, or l denote
the memory model (see chapters 2 and 4). These files may need to be modified if the
run-time environment is to be customized.

The crt0 file contains the C bootstrap code, parameters that specify memory configura-
tion, memory management, interrupt vectors, and other miscellaneous code. This file
must be modified to match the software and hardware configuration, as both the memory
configuration and interrupt vectors are determined by hardware. The information in this
manual on the crt0 file applies to DSP563CCC.

The signal file, which is equivalent to a hardware interrupt, is implemented in the C
environment. The signal file contains the code and data structures used to implement the
signal() and raise() library functions. Changing this file is not recommended unless
necessary since any change to this file requires detailed knowledge of the
DSP56300 family interrupt mechanism in addition to the semantics of the signal and
raise functions. This file is closely tied to the signal.h file.

6-2 DSP563CCC User’s Manual MOTOROLA

The setjmp file contains code which implements the functions setjmp() and longjmp() .
This file will probably never need to be modified unless the signal file is changed; however,
if either the setjmp file or setjmp.h are modified, the code in both files must be kept con-
sistent. The source code for setjmp() and longjmp() is provided with DSP563CCC to al-
low modification, should the signal mechanism need to be changed.

The operation of setjmp() and longjmp() is described in Section 6.5 and detailed imple-
mentation information can be obtained from the files provided with
DSP563CCC.

6.3 The crt0 File
The following subsections describe the various functions of the crt0 file.

6.3.1 Bootstrapping the C program
The processor enters a C program through the C bootstrap code in the crt0 file. The C
bootstrap code in crt0 provides the C environment required to execute a C program. This
environment includes a global / static data area, stack area, heap area, etc. This environ-
ment must be established before C programs can execute correctly.

The following bootstrapping steps are normally taken before the processor starts to exe-
cute C code:

1. Jump from the chip reset vector to the C bootstrap code labeled at F_ _start in
ctr0 . Remember that the mode select pins on the chip control the chip operating
mode when leaving reset which, in turn, controls the reset vector address (see the
Motorola DSP56300 Family Manual for more details).

2. Configure all hardware registers needed (i.e,. omr , host port, etc.). This is also a
proper place to initialize any non-C related data structures or peripheral hardware.

3. Load the Stack Pointer, r6, with a pointer to the base of the stack. Remember that
the stack grows up (the value in the stack pointer gets greater as data is pushed).
The value of DSIZE is generated by the linker and is the first address above the
statically allocated data (C global and static variables). By default, this value is
used as the initial stack pointer.

4. Call main() with instruction jsr Fmain . Notice that the label is Fmain and that there
are no parameters passed to the main function. Typical C compilers passes two or
three arguments to main() , however g563c does not pass any arguments as
DSP563CCC does not support a particular hosted environment.

The bootstrap code is followed with the label F_ _crt0_end . This label is used by run563
to detect program termination.

MOTOROLA DSP563CCC User’s Manual 6-3

Note: Labels which begin with a double underline (e.g., _ _crt0_end) in this
manual have a space between the double underlines to visually separate
them. Do not separate the leading double underlines with a space
when coding them (i.e., code _ _crt0_end as __crt0_end).

Example 6-1 DSP56300 Operation Mode Change: Mode 2 has a reset vector
of $E000 which must contain a jmp to the C program bootstrap
code. Adding the following code segment to the crt0 file will
change the bootstrap mode to Mode2.

section mode2_reset
org p:$e000
jmp F_ _start ; jump to the C start-up program.
endsec

Example 6-2 Hardware was designed to have a 256 byte ROM monitor located
in the program memory space starting at $0000 and ending at
$FF. Program RAM starts at location p:$100. The following
changes to the crt0 file will change the beginning location of the
C bootstrap code to the first available RAM location (p:$100). The
DS statement allocates program space starting at p:$0000 and
lets the ROM be located at address p:$0000. The org statement
places the C bootstrap code at memory location p:$100.

Change this portion of the crt0 file:

org p:
F_ _start

to:

org p:$0
ds $100 ; reserve space
org p:$100

F_ _start

6.3.2 Memory Configuration and Management
The DSP56300 family supports three memory spaces: program memory (p memory), y
data memory, and x data memory. There are four data segments in the C programming
environment. These are the program segment, global/static data segment, stack data
segment and heap data segment. The program segment is located in program memory.

6-4 DSP563CCC User’s Manual MOTOROLA

Global and static data reside at the bottom of the available data memory. The top address
of the global and static data area, which is called DSIZE, is set by the linker. The constant
TOP_OF_MEMORY is defined to indicate the top of the entire available memory.

The two dynamic data segments, heap and stack, are located at the top and bottom of
memory, respectively. The stack is located so that it can grow up and the heap is located
so that it can grow down. There are two locations used to indicate the initial values for the
heap pointer and stack pointer. These locations are _ _y_size and _ _break and are ini-
tialized in the crt0 file as DSIZE and TOP_OF_MEMORY, respectively.

In summary, two variables _ _y_size and _ _break and the constant TOP_OF_MEMORY
are used to configure the data segments. The program segment is configured using the
org statements in the crt0 file. The variable _ _y_size should be initialized with the desired
initial stack pointer and the variable _ _break should be initialized with the desired initial
heap pointer.

Caution
The stack and heap regions must not contain on-chip peripheral memory or
the static or global data regions. Also , no region may be reconfigured after
the C main function is called. Variables _ _y_size and _ _break should not
be altered by an arbitrary function since they are utilized by system level
libraries such as malloc and free .

Example 6-3 Fast Stack: In this example, it is desired that the stack reside in
an 8k SRAM starting at x:$4000. The following program reserves
the stack space using org and ds statements and sets the initial
stack pointer to the SRAM stack area.

Add this section to the crt0 file:

section fast_ram
org x:$4000
ds $2000
endsec

Change the following line of C bootstrap code in the crt0 file:

move y:F_ __size,r6

to:

move #$4000,r6

Example 6-4 Fast Heap: It is desired that the heap reside in an 8k SRAM
starting at x:$4000. The following program reserves the heap
space using org and ds statements and sets the initial heap
pointer to the SRAM heap area.

MOTOROLA DSP563CCC User’s Manual 6-5

Add this section to the crt0 file:

section fast_ram
org x:$4000
ds $2000
endsec

Change the following line in the crt0 file:

TOP_OF_MEMORY equ $ff0000

to:

TOP_OF_MEMORY equ $4000

Sometimes hardware configurations map more than one memory space into a single
physical memory. Other implementations partially populate various address spaces leav-
ing holes. Some may have different regions with fast memory and slow memory. All of
these special cases can usually be handled by modifying thecrt0 file.

When multiple memory spaces are mapped into a single physical memory, the memory
must be partitioned. A way to restrict the linker from overlapping these memory spaces is
needed. For example, suppose that both the x and pspaces are mapped into the same
64k physical RAM and need to be partitioned with the low 48k for program memory and
the high 16k for data memory.

The linker can be restricted from allocating across holes in physical memory by using the
org and ds directives to confiscate those addresses. Note that the linker may not auto-
matically take advantage of memory which is present between holes. It may be required
to manually place data structures in order to utilize this memory.

6.3.3 Interrupt Vectors
The interrupt vector locations for the DSP56300 family (a.k.a. “interrupt source” in the
DSP56300 Family Manual) contain one or two instructions each to be executed when the
interrupt assigned to that location occurs. There are 128 interrupt vectors available, all of
which should be initialized with some value to avoid undefined behavior resulting from an
unexpected interrupt.

The crt0 file contains code to initialize these interrupt vectors. By default, all but one of
the vectors are initialized with the instruction jsr Fabort . The first element of the vector
table, which is the hardware reset vector, is initialized with the instruction jmp F_ _start.
The purpose of the C function abort() , which is labeled as Fabort in the assembly envi-
ronment, is to stop program execution due to an error. The F_ _start labels the program
address of the bootstrap code that calls main() .

6-6 DSP563CCC User’s Manual MOTOROLA

Interrupt vectors that are to be used must be reprogrammed to point to the interrupt ser-
vice routines instead of the abort() function.

Thefollowing crt0 code segment is the default interrupt vector table initialization.

section reset
org p:$0
jmp F_start
org p:$2
dup 127
jsr Fabort
endm
endsec

The interrupt vector table can be changed to point to user-provided interrupt service rou-
tines instead of the abort() routine in this portion of crt0 . Example 6-5 illustrates how to
initialize pointers to these user-provided interrupt service routines.

Example 6-5 User-defined Interrupt Vector Table: Assume the hardware
supports all interrupts and each interrupt service routine is
located at the address labeled interruptXX (where XX is the value
of the interrupt vector). The following code initializes the interrupt
vector table. Each service routine starting at interruptXX can be
programmed in assembly language as shown.

section reset
org p:$0
jmp F_ _start
jsr interrupt02
jsr interrupt04
jsr interrupt06
jsr interrupt08
…
jsr interrupt
endsec

Example 6-6
Interrupt Service Routine: This service routine updates the
global variable F_ _time at each hypothetical timer interrupt.

section interrupt
org p:
global interrupt

interrupt

MOTOROLA DSP563CCC User’s Manual 6-7

move (r6)+ ; secure the stack pointer
; (refer to section 5.4.1.4)

move r1,:(r6) ; save the r1 register
move y:F_ _time,r1 ;retrieve the variable _ _time
move (r1)+ ; increment the variable
move r1,y:F_ _time ; save the result
move y:(r6) -,r1 ; restore the r1 register
rti ; return from interrupt service
endsec

Notice that fast interrupts can also be programmed by modifying the crt0 file in the same
way as for the long interrupts (see the DSP56300 Family Manual for more information on
fast and long interrupts).

6.3.4 Miscellaneous Code
There are other data structures and code related to the run-time environment in the crt0
file. They are:

1. The error code variable, errno , is a global integer used to record failure codes in
C library calls. This error code variable is needed if standard ANSI C library calls
are used. This variable can be utilized as a debugging aid in order to check which
error code is returned fromC function calls.

2. Heap-stack checking window variable, _ _stack_safety , is a global variable
declared in the crt0 file that is used by the heap allocation routines, malloc() ,
calloc() and realloc() to avoid heap-stack growth collisions. If the distance
between the bottom of the heap and the top of the stack is less than the value
contained in _ _stack_safety , then the heap allocation routine will return an error
code indicating that no more memory is available. The value may be set as
required by the application since the window _ _stack_safety is declared as a
global variable.

3. Memory limit variable, _ _mem_limit, is a global variable declared in the crt0 file
and used by the library routine brk() to disallow any meaningless memory re-
quests. This variable should have the same value as _ _break upon entry into
main(). For information on how to use the function brk() , refer to Appendix B in this
manual.

4. Dynamic time variable, _ _time, is a global variable declared in the crt0 file and
used as a volatile timer counter by the simulator. This variable is updated by the
DSP563XX simulator (run563) every clock cycle. Examining this variable allows
the programmer to determine program execution time. This variable is only used

6-8 DSP563CCC User’s Manual MOTOROLA

by the simulator and can be omitted when the program is to be executed by hard-
ware.

5. Host I/O stub functions, _ _send() and _ _ receive(), are defined in crt0 and are
called by the standard I/O library functions. The provided crt0 file only has stub
functions, as run563 watches these addresses and performs all I/O directly.

All of these variables, constants, functions and pointers are related to the run-time envi-
ronments that are used by C library functions and must be properly set.

6.4 Signal File
The hardware level interrupt mechanism (see the DSP56300 Family Manual) is more ef-
ficient than the signal() function. However, in many cases interrupts can be handled in the
C environment and it is often preferable to do so. There are two functions, signal() and
raise() , used to support programming interrupt service routines in C. These functions are
not associated with the crt0 file. Although they are more complicated than the simple
hardware interrupt vector table discussed in Section 6.3.3 (see the DSP56300 Family
Manual) they provide very handy tools for the C programmer. A thorough knowledge of
the signal() function and the C environment is needed in order to modify the signal() func-
tion. This section describes how the signal() function is currently implemented.

6.4.1 Signal()
The signal() function is passed two arguments:

1. A signal number — On the DSP56300 processor, the signal number corresponds
directly to the interrupt vector address. Notice that the signal numbers are even
numbers.

2. A function pointer — The function pointer passed is assumed to belong to a C
function either generated by this compiler or by assembly code. The pointed-to
function is assumed to follow the compiler’s calling conventions with respect to reg-
isters saved, etc.

Signal() performs the following three steps when binding the specified signal number and
function:

1. The instruction jsr F_ _c_sig_goto_dispatch+<signal number> is placed into
the interrupt table location specified by the signal number.

2. The function pointer passed is entered into the table _ _c_sig_handlers , which is
used to store pointers to C signal handlers, indexed by the signal number.

3. The old signal handler address is returned.

MOTOROLA DSP563CCC User’s Manual 6-9

Once the signal number and specified function are bound, the instruction

jsr F_ _c_sig_goto_dispatch+<signal number>

is executed upon receiving the interrupt, where the F_ _c_sig_goto_dispatch variable is
the starting address of a table of

jsr F_ _c_sig_dispatch

instructions and each jsr instruction points to an interrupt service routine. The
pseudo-function _ _c_sig_dispatch() is used to calculate the actual C interrupt routine.

All registers are saved before the _ _c_sig_dispatch() function calls the C signal handler.
Pseudo function _ _c_sig_dispatch() then calculates the signal number using the return
address program counter of the ssh. Since the signal number is the same as the interrupt
vector address, each entry of the _ _c_sig_goto_dispatch table corresponds to an inter-
rupt vector. The pseudo function uses the signal number to fetch the actual C signal han-
dler from the _ _c_sig_handlers table which is the C function pointer table.

Once the C signal handler is fetched from the _ _c_sig_handler table, its entry is re-
placed with the default signal handler SIG_DFL. This replacement is in compliance with
the ANSI standard and forces the next signal service to abort. In most situations, this fea-
ture is not needed because any given interrupt will always invoke the same interrupt ser-
vice routine. Re-running signal() after each C service routine or modifying this file so that
it does not replace the table entry with SIG_DFL will change the interrupt service scheme.
Modification of the signal file is only recommended when optimization of the service time
is critical to the application.

Upon return from the C signal handler, all the registers are restored. Finally, the rti instruc-
tion is executed to return to the code that was executing when the interrupt occurred. No-
tice two factors in this scheme,

1. all registers are saved and restored before and after the C signal handler and

2. the rti instruction is executed by the _ _c_sig_dispatch() function.

Caution
The signal handler must not contain the rti instruction at the end of the
program regardless which language is used to program the interrupt. The
signal handler does not need to save or restore any context or registers.
The function _ _c_sig_dispatch() will not act like a normal C function
because it never returns to its caller. Instead, it will return to the code that
was executing when the interrupt happened by executing the rti instruction.

Assembly language interrupt handlers can coexist with C signal handlers. The code in the
signal file will not alter any interrupt vector except the one specified by the signal number

6-10 DSP563CCC User’s Manual MOTOROLA

passed to the signal() function (see the first of the three steps above). The C signal inter-
face could be used with an assembly routine but would be unnecessarily slow. To use an

assembly language interrupt handler, alter the vector (e.g., interrupt 08) with a jsr to it
(e.g., jsr interrupt 08)or use a fast interrupt routine.

6.4.2 Raise()
The raise() function is used to simulate an interrupt. The code in raise() simply calls the
entry in _ _c_sig_goto_dispatch that is matched to the interrupt vector specified by the
signal number passed.

The ANSI standard signal handlers SIG_DFL, SIG_ERR and SIG_IGN are implemented
by the hand-coded functions _ _sig_dfl() , _ _sig_err() and _ _sig_ign() , respectively.

1. SIG_DFL notes that the interrupt happened by incrementing _ _sig_drop_count
and then returns.

2. SIG_ERR calls abort() and never returns.

3. SIG_IGN returns without any effect (i.e., ignore).

The mechanisms used to implement the C signal interface may be altered to fit a particular
hardware application. Any series of alterations applied to the signal file must leave an im-
plementation conforming to the ANSI standard X3.159 for C. Alteration of the signal file is
done at one’s own risk and is not generally advised. Again, the contents of the signal file
must remain consistent with the include file signal.h.

6.5 Setjmp File
The functions setjmp() and longjmp() are implemented in the setjmp file. The setjmp()
function stores the current process status (i.e., the current execution context) in a buffer
that is passed. The longjmp() function is used to restore the process status to the execu-
tion context which was saved by setjmp() .

Saving the current execution context is done by saving the stack pointer, the return pro-
gram counter value, the frame pointer and all of the callee-save registers into the buffer.
The buffer that is passed to setjmp() should have enough space for the saving process.
The structure jmp_buf defined in setjmp.h allocates the buffer space needed for the op-
eration. The function setjmp() always returns a zero.

The function longjmp() takes two arguments, an environment buffer and a return value.
It restores all registers from the buffer passed, including the frame pointer and stack point-
er. It then places the return value passed into accumulator a and sets the ccr to reflect the
return value just stored in accumulator a. The function longjmp() discards the return pro-

MOTOROLA DSP563CCC User’s Manual 6-11

gram counter on the hardware stack and jumps to the address pointed to by the program
counter stored in the buffer.

This file must conform to the include files setjmp.h and longjmp.h. Since these two al-
gorithms are very straightforward, modification of the file may be not needed. If modifica-
tion is absolutely necessary, then the ANSI standard of the functions setjmp() and
longjmp() should be followed.

6.6 Host-Supported I/O (printf (), et al)
The library provided with DSP563CCC includes a full implementation of the ANSI C stan-
dard input and output routines. These routines already work with run563 , and can easily
be embedded in custom applications. Anywhere that formatted I/O is desired, these li-
brary routines can be included to simplify development. The entire suite of routines is
based upon a simple communication protocol between the DSP and a host resident I/O
driver, so porting the entire system to custom hardware is trivial.

6.6.1 DSP functions __send () and __receive ()
All standard I/O functions, no matter how complicated, are built upon two simple commu-
nication functions, __send () , and __receive () . __send () sends a message to the I/O
driver code residing on the host. __receive () retrieves a message from that same driver.
Implementing these two functions is all that need be done on the DSP in order to support
standard I/O on custom hardware.

It is assumed that some sort of hardware communication channel exists between the host
and the DSP. __send () and __receive () implement a simple message passing mecha-
nism on top of such a channel. __send () accepts two arguments: the address of the buff-
er to send, and the number of words to draw from that buffer. __receive () accepts the
address of a buffer in which to place the received message as its single argument. All of
the interactions between the host and DSP are driven by the library code running on the
DSP; because the DSP is in control, it knows the size of return messages from the host,
rendering a count argument to the function __receive () superfluous. __send () and
__receive () are as simple as they seem; the complexity of the standard I/O package is
embedded in the host-side driver and the lib563[xyl].clb library routines.

6.6.2 The Host-Side I/O Driver
The application running on the host must have the provided I/O driver embedded in it. The
driver is written in C, and uses typically available library routines such as open (), close
(), read () , and write () to perform the actions requested by the DSP. The I/O code is writ-
ten as an event-driven state machine, so that the host side application can perform con-
currently with the DSP when the DSP is not requesting I/O activity. In fact, the I/O driver
on the host may be interrupt driven.

6-12 DSP563CCC User’s Manual MOTOROLA

The host-side driver consists of the code in dsp/etc/hostio.h and dsp/etc/hostio.c . The
meat of the package consists of two functions, init_host_io_structures() and

process_pending_host_io () , and two buffers hio_send and hio_receive . The function
init_host_io_structures () is called to initialize host-side driver data structures before
DSP execution is commenced. The buffer hio_send is used to send messages to the
DSP, and hio_receive is used to receive messages from the DSP. The function
process_pending_host_io () considers the current state of the buffers and its own inter-
nal state, and then performs any required buffer modification or host I/O.

6.6.3 Communication between the Host and DSP
The messages passed between the DSP and the host’s I/O driver are defined in the file
dsp/include/ioprim.h . All sequences of communication are initiated by the DSP as a di-
rect result of a call to a standard I/O function. Each standard I/O call may initiate a series
of messages between the DSP and the host, with the host eventually returning a message
containing the completion status of the original request. The file dsp/include/ioprim.h is
included by both the host-side I/O driver, and the standard I/O library code; it defines the
constant definitions used in the aforementioned messages. A typical series of events and
messages that comprise a standard I/O call might look like this:

1) The application running on the DSP makes a call to fopen () .

2) The library code in lib563[xyl].clb calls __send () , with a buffer that contains the code
DSP_OPEN, the flags, the mode, and the string length of the path.

3) The host receives the message into the buffer hio_receive , sets its valid flag, and calls
process_pending_host_io () . The state machine inside process_pending_host_io ()
notes that it is now in the middle of an open file request, records the values from the first
message, and then returns. At this point, code written by the application developer must
check the valid flag of the buffer hio_send; in this case, the buffer hio_send has not been
marked valid.

4) The library code in lib563[xyl].clb calls __send () again, this time sending the path.

5) Again, the host receives the message into the buffer hio_receive , and calls
process_pending_host_io () after setting the buffer’s valid flag.

6) process_pending_host_io () uses the information from the two messages to perform
the file open. It then builds an operation status message, places it in the buffer hio_send ,
and sets that buffer’s valid flag. process_pending_host_io () resets its internal state and
returns.

7) The host checks the buffer valid flag on hio_send , sees that it is true, and transmits the
message to the DSP.

MOTOROLA DSP563CCC User’s Manual 6-13

8) The library code running on the DSP finishes the fopen () call and returns.

On the host side of the interface, the application writer must write the code that exchanges
data with the DSP, the code that calls process_pending_host_io () , and the code that
checks buffer valid flags. On the DSP side of the interface, the application writer must
write the routines __send () and __receive () . The communication between the DSP and
the host is always initiated by the DSP and always follows a predetermined pattern, de-
pending on the initial message. Because this communication is so simple, the code that
calls process_pending_host_io () can also be quite simple.

Example 6-7 is a hypothetical non-reentrant interrupt handler written in C. It uses two
functions, peek () and poke () , to access some sort of hardware communication device
connected to the DSP. The functions peek () and poke () aren’t provided; they’re simply
an abstraction for host-side hardware access. This code assumes that the DSP sends the
size of a message directly before sending a message. CHECK_BUFFER_SIZE is a mac-
ro defined in dsp/etc/hostio.h . It should always be used to ensure that the buffer
hio_receive is large enough to handle the incoming message. Finally, this example as-
sumes that the function signal () is available to register interrupt handlers.

This code doesn’t have to be implemented in an interrupt driven manner; periodic polling
could be used as well. The critical issues are that the communication must be reliable, and
that the system must not deadlock; the latter is easy to ensure, given the simple nature of
the communication protocol.

Example 6-7 Sample Host-Side Glue Code

void interrupt_driven_io ()

{

int i;

/* get the size of the message from the DSP. */

int size = peek (IN_PORT);

/* make sure that hio_receive is large enough. */

CHECK_BUFFER_SIZE (& hio_receive, size);

/* read the message via hardware, into the buffer. */

for (i = 0; i < size; ++ i)

{

6-14 DSP563CCC User’s Manual MOTOROLA

hio_receive.buffer[i] = peek (IN_PORT);

}

/* mark the buffer as valid, perform any requested I/O. */

hio_receive.valid_p = TRUE;

process_pending_host_io ();

/* if the driver wants to send to the DSP, then do so now. */

if (hio_send.valid_p)

{

for (i = 0; i < hio_send.length; ++ i)

{

poke (OUT_PORT, hio_send.buffer[i]);

}

hio_send.valid_p = FALSE;

}

/* re-register this handler for future DSP message interrupts. */

signal (SIG_IN_PORT, interrupt_driven_io);

}

MOTOROLA DSP563CCC User’s Manual A-1

Appendix A
Library Support

A.1 Standard ANSI Header Files
Each function provided in the ANSI C library lib563c[xyl].clb is declared with the
appropriate prototype in a header file, whose contents may be included by using the
#include preprocessing directive with angular brackets. In addition to function
prototypes, the header also defines all type and MACRO definitions required for ANSI
conformance.

The ANSI standard header files provided are:

assert.h locale.h stddef.h

ctype.h math.h stdio.h

errno.h setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h

In general, header files may be included in any order and as often as desired with no
negative side effects. The one exception occurs when including assert.h . The definition
of the assert macro depends on the definition of the macro NDEBUG.

The contents of the standard header files provided are exactly as described by the ANSI
document X3.159-1989 dated December 14, 1989. ANSI C Library Functions

The library contains all of the ANSI defined subroutines. The C and assembly language
source for each library routine is distributed free of charge with the compiler.

A.1.1 Hosted vs. Non-Hosted Library Routines
Some of the standard ANSI defined routines perform I/O. Programs that use these
functions will not encounter problems when run using run563 . Extra work may be
needed to port hosted I/O routines to custom hardware configurations. Non-hosted
routines will not encounter any problems on custom hardware.

For a description of run563 , see Appendix B.

A-2 DSP563CCC User’s Manual MOTOROLA

A.2 Forcing Library Routines Out-of-line
For performance reasons, several run-time library routines have been created to be used
in-line by the compiler. The compiler in-lines a subroutine by replacing the occurrence of
the subroutine call with the body of the subroutine itself. This provides execution time
benefits:

1. Eliminates subroutine call overhead. This is a substantial portion of the run-
time for some library routines.

2. Exposes more optimization opportunities to the optimizer.

The following library routines are automatically in-lined by the compiler when their
header file is included:

header: ctype.h

• isalnum • isalpha • iscntrl • isdigit
• isgraph • islower • isprint • ispunct
• isspace • isupper • isxdigit • tolower
• toupper

header: math.h

• ceil • fabs • floor • fmod

header: stdlib.h

• abs • labs

header: string.h

• strcmp • strcpy

MOTOROLA DSP563CCC User’s Manual A-3

When it is necessary to disable this feature, possibly for debugging or decreasing
program size, simply do one of the following:

1. Add the following line to each C module (or once to a common header file)

#undef ROUTINE_NAME

where ROUTINE_NAME is the library routine that must be forced out-of-line.
For example, to force the library routine ceil out-of-line:

#undef ceil

2. Use the command-line option -U, see Chapter 3, Control Program Options.
This will force the library routine to be called for this compilation. If the code is
re-compiled, the -U option must be used again.

C:\> g563c -Uceil file.c

A.3 Function Descriptions
The following section describes each function in complete detail. The synopsis provides
the syntax of the function, and the options section discusses each option in detail. Many
function descriptions also include references to related functions and an example of how
to use the function. The following list provides an abbreviated description of each
function.

abort — Force abnormal program termination.
abs — Absolute value of integer.
acos — Arc cosine.
asin — Arc sine.
atan — Arc tangent.
atan2 — Arc tangent of angle defined by point y/x.
atexit — Register a function for execution upon normal program termination.
atof — String to floating point.
atoi — String to integer.
atol — String to long integer.
bsearch — Perform binary search.
calloc — Dynamically allocate zero-initialized storage for objects.
ceil — Ceiling function.
clearerr — Clear error indicators associated with a stream.
cos — Cosine.
cosh — Hyperbolic cosine.
div — integer division with remainder.
exit — Terminate program normally.
exp — Exponential, ex.

A-4 DSP563CCC User’s Manual MOTOROLA

fabs — Absolute value of a double.
fclose — Close a stream.
feof — Test the end-of-file indicator of a stream.
ferror — Test the error indicator of a stream.
fflush — Flush all output pending on a stream.
fgetc — Read a character from a stream.
fgetpos — Retrieve the current value of the file position indicator of a stream.
fgets — Read a string from a stream.
floor — Floor function.
fmod — Floating point remainder.
fopen — Open a named file on the disk, to be accessed via a stream.
fprintf — Write formatted output to a stream.
fputc — Write a character to a stream.
fputs — Write a string to a stream.
fread — Read unformatted input from a stream.
free — Free storage allocated by calloc, malloc, and realloc.
freopen — Open a named file on the disk, to be accessed via a stream.
frexp — Break a floating point number into mantissa and exponent.
fscanf — Read formatted input from a stream.
fseek — Set a stream’s file position indicator.
fsetpos — Set a stream’s file position indicator.
ftell — Retrieve the current value of a stream’s file position indicator.
fwrite — Write unformatted output to a stream.
getc — Read a character from a stream (this may be a macro).
getchar — Read a character from the stream stdin (this may be a macro).
gets — Read a string from the stream stdin.
isalnum — Test for alphanumeric character.
isalpha — Test for alphabetic character.
iscntrl — Test for control character.
isdigit — Test for numeric character.
isgraph — Test for printing character, excluding space and tab.
islower — Test for lower-case alphabetic characters.
isprint — Test for printing character, excluding ‘\t’.
ispunct — Test for punctuation character.
isspace — Test for white-space character.
isupper — Test for upper-case alphabetic character.
isxdigit — Test for hexadecimal numeric character.
labs — Absolute value of a long integer.
ldexp — Multiply floating point number by a power of two.
ldiv — Long integer division with remainder.

MOTOROLA DSP563CCC User’s Manual A-5

log — Natural logarithm, base e.
log10 — Base ten logarithm.
longjmp — Execute a non-local jump.
malloc — Dynamically allocate uninitialized storage.
mblen — Length of a multibyte character.
mbstowcs — Convert multibyte string to wide character string.
mbtowc — Convert a multibyte character to a wide character.
memchr — Find a character in a memory area.
memcmp — Compare portion of two memory areas.
memcpy — Copy from one area to another.
memmove — Copy from one area to another (source and destination may overlap).
memset — Initialize memory area.
modf — Break a double into it’s integral and fractional parts.
perror — Print error message indicated by errno.
pow — Raise a double to a power.
printf — Write formatted output to the stream stdout.
putc — Write a character to a stream (this may be a macro).
putchar — Write a character to the stream stdout (this may be a macro).
puts — Write a string to the stream stdout.
qsort — Quick sort.
raise — Raise a signal.
rand — Pseudo- random number generator.
realloc — Change size of dynamically allocated storage area.
remove — Remove a file from the disk.
rename — Rename a file on the disk.
rewind — Reset the file position indicator of a stream to the beginning of the file on

the disk.
scanf — Read formatted input from the stream stdin.
setjmp — Save a reference of the current calling environment for later use by

longjmp.
setbuf — Associate a buffer with a stream.
setvbuf — Associate a buffer with a stream, while also specifying the buffering

mode and buffer size.
signal — Set up signal handler.
sin — Sine.
sinh — Hyperbolic Sine.
sprintf — Write formatted output to a string.
sqrt — Square root.
srand — Seed the pseudo-random number generator.
sscanf — Read formatted input from a string.
strcat — Concatenate two strings.

A-6 DSP563CCC User’s Manual MOTOROLA

strchr — Find first occurrence of a character in a string.
strcmp — Compare two strings.
strcoll — Compare two strings based on current locale.
strcpy — Copy one string into another.
strcspn — Compute the length of the prefix of a string not contained in a second

string.
strerror — Map error code into an error message string.
strlen — Determine length of a string.
strncat — Concatenate a portion of one string to another.
strncmp — Compare a portions of two strings.
strncpy — Copy a portion of one string into another.
strpbrk — Find the first occurrence of a character from one string in another.
strrchr — Find the last occurrence of a character in a string.
strspn — Compute the length of the prefix of a string contained in a second string.
strstr — Find the first occurrence of one string in another.
strtod — String to double.
strtok — Break string into tokens.
strtol — String to long integer.
strtoul — String to unsigned long integer.
strxfrm — Transform a string into locale-independent form.
tan — Tangent.
tanh — Hyperbolic tangent.
tmpfile — Create a temporary binary file on the disk to be referenced via a stream.
tmpnam — Generate a unique, valid file name.
tolower — Convert uppercase character to lowercase.
toupper — Convert lowercase character to uppercase.
ungetc — Push a character back onto a specified input stream.
vfprintf — Write formatted output to a stream, using a va_list.
vprintf — Write formatted output to the stream stdout, using a va_list.
vsprintf — Write formatted output to a string, using a va_list.
wcstombs — Convert wchar_t array to multibyte string.
wctomb — Convert wchar_t character to multibyte character.

abort abort

MOTOROLA DSP563CCC User’s Manual A-7

NAME
abort — Force abnormal program termination.

SYNOPSIS
#include <stdlib.h>

void abort (void);

DESCRIPTION
The abort function causes the program to terminate abnormally unless the signal
SIGABRT is being caught and the signal handler does not return. The unsuccessful
termination value, -1, is returned to the host environment (run563). The abort function
will not return to its caller.

SEE ALSO
exit — Terminate a program normally.

signal — Set up a signal handler.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

printf(“-- make abort call --\n”);

abort();

printf(“this line not reached\n”);

}

prints to standard output:

-- make abort call --

abs abs

A-8 DSP563CCC User’s Manual MOTOROLA

NAME
abs — Absolute value of integer.

SYNOPSIS
#include <stdlib.h>

int abs (int j);

DESCRIPTION
The abs function returns the absolute value of j.

When the header file stdlib.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

SEE ALSO
fabs — Absolute value of a double.

labs — Absolute value of a long.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

int neg = -709;

printf("-- abs(%d) == %d --\n", neg,abs(neg));

}

prints to standard output:

-- abs(-709) == 709 --

acos acos

MOTOROLA DSP563CCC User’s Manual A-9

NAME
acos — Arc cosine.

SYNOPSIS
#include <math.h>

double acos (double x);

DESCRIPTION
The acos function computes the principal value of the arc cosine of x in the range [0.0,
π], where x is in radians. If x is not in the range [-1, +1], a domain error occurs, errno is
set to EDOM and a value of 0.0 is returned.

SEE ALSO
cos — Cosine.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)

{

printf("%f ", acos(point));

if (point >= 0.0) printf("\n");

}

}

prints to standard output:

2.498090 2.214290 1.982310 1.772150 1.570790 1.369430

1.159270

0.927295

0.643501

0.000345

asin asin

A-10 DSP563CCC User’s Manual MOTOROLA

NAME
asin — Arc sine.

SYNOPSIS
#include <math.h>

double asin (double x);

DESCRIPTION
The asin function computes the principal value of the arc sine of x in the range [-π/2, +π/
2], where x is in radians. If x is not in the range [-1, +1], a domain error occurs, errno is
set to EDOM and a value of 0.0 is returned.

SEE ALSO
sin — Sine.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)

{

printf("%f ", asin(point));

if (point >= 0.0) printf("\n");

}

}

prints to standard output:

-0.927295 -0.643501 -0.411516 -0.201357 -0.000000 0.201357
0.411516
0.643501
0.927295
1.570450

atan atan

MOTOROLA DSP563CCC User’s Manual A-11

NAME
atan — Arc tangent.

SYNOPSIS
#include <math.h>

double atan (double x);

DESCRIPTION
The atan function computes the principal value of the arc tangent of x in the range [-π/2,
+π/2], where x is in radians.

SEE ALSO
tan — Tangent.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double point;

for (point = -0.8 ; point < 1.0 ; point += 0.2)

{

printf("%f ", atan(point));

if (point >= 0.0) printf("\n");

}

}

prints to standard output:

-0.674740 -0.540419 -0.380506 -0.197395 -0.000000 0.197395
0.380506
0.540419
0.674740
0.785398

atan2 atan2

A-12 DSP563CCC User’s Manual MOTOROLA

NAME
atan2 — Arc tangent of angle defined by point y/x.

SYNOPSIS
#include <math.h>

double atan2 (double y, double x);

DESCRIPTION
The atan2 function computes the principal value of the arc tangent of y/x using the signs
of both arguments to determine the quadrant of the return value. If both arguments are
zero, errno is set to EDOM and 0.0 is returned.

argument range output range

y ≥ 0.0, x ≥ 0.0 [0.0, π/2]

y ≥ 0.0, x < 0.0 [π/2, π]

y < 0.0, x < 0.0 [-π, -π/2]

y < 0.0, x ≥ 0.0 [-π/2, 0.0]

SEE ALSO
atan — Arc tangent.

tan — Tangent.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("atan2(7.09,7.09) == %f\n", atan2(7.09,7.09));

printf("atan2(-7.09,7.09) == %f\n", atan2(-7.09,7.09));

printf("atan2(7.09,-7.09) == %f\n", atan2(7.09,-7.09));

printf("atan2(-7.09,-7.09) == %f\n",atan2(-7.09,-7.09));

}

prints to standard output:

atan2(7.09, 7.09) == 0.785398

atan2(-7.09, 7.09) == -0.785398

atan2(7.09, -7.09) == 2.356190

atan2 atan2

MOTOROLA DSP563CCC User’s Manual A-13

atan2(-7.09, -7.09) == -2.356190

atexit atexit

A-14 DSP563CCC User’s Manual MOTOROLA

NAME
atexit — Register a function for execution at normal program termination.

SYNOPSIS
#include <stdlib.h>

int atexit (void (*func) (void));

DESCRIPTION
The atexit registers a function func that will be called at normal program execution. The
registered function is called without arguments and returns nothing.

A total of 32 functions may be registered and will be called in the reverse order of their
registration. The atexit function returns zero if registration succeeds and a non-zero
value for failure.

SEE ALSO
exit — Terminate a program normally.

EXAMPLE
#include <stdio.h>
#include <stdlib.h>

void func_1 (void)
{

printf ("first function called\n");
}

void func_2 (void)
{

printf ("second function called\n");
}

void main ()
{

atexit (func_1);
atexit (func_2);
printf ("-- testing atexit --\n");

}

prints to standard output:
-- testing atexit --
second function called
first function called

atof atof

MOTOROLA DSP563CCC User’s Manual A-15

NAME
atof — String to floating point.

SYNOPSIS
#include <stdlib.h>

double atof (const char* nptr);

DESCRIPTION
The atof function converts the string pointed to by nptr to a double. If the result can not
be represented, the behavior is undefined. This is exactly equivalent to:

strtod (nptr, (char **) NULL);

SEE ALSO
atoi — String to integer.

atol — String to integer.

strtod — String to double.

strtol — String to long integer.

strtoul — String to unsigned long integer.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

printf("atof (\"7.09\") == %f\n", atof ("7.09"));

}

prints to standard output:

atof("7.09") == 7.089990

atoi atoi

A-16 DSP563CCC User’s Manual MOTOROLA

NAME
atoi — String to integer.

SYNOPSIS
#include <stdlib.h>

int atoi (const char* nptr);

DESCRIPTION
The atoi function converts the string pointed to by nptr to an integer. If the result can not
be represented, the behavior is undefined. This is exactly equivalent to:

(int) strtol (nptr, (char **) NULL, 10);

SEE ALSO
atof — String to double.

atol — String to long integer.

strtod — String to double.

strtol — String to long integer.

strtoul — String to unsigned long integer.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

printf("atoi(\"709\") == %d\n", atoi("709"));

}

prints to standard output:

atoi("709") == 709

atol atol

MOTOROLA DSP563CCC User’s Manual A-17

NAME
atol — String to long integer.

SYNOPSIS
#include <stdlib.h>

long atol (const char* nptr);

DESCRIPTION
The atol function converts the string pointed to by nptr to a long integer. If the result can
not be represented, the behavior is undefined. This is exactly equivalent to:

strtol(nptr, (char **) NULL, 10);

SEE ALSO
atof — String to double.

atoi — String to integer.

strtod — String to double.

strtol — String to long integer.

strtoul — String to unsigned long integer.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

printf("atol(\"709\") == %ld\n", atol("709"));

}

prints to standard output:

atol("709") == 709

bsearch bsearch

A-18 DSP563CCC User’s Manual MOTOROLA

NAME
bsearch — Perform binary search.

SYNOPSIS
#include <stdlib.h>

void bsearch (const void* key, const void* base,

size_t nmemb, size_t size,

int (*compare) (const void*, const void*));

DESCRIPTION
The bsearch function searches an array of nmemb objects (the initial element of which
is pointed to by base) for an element that matches the object pointed to by key. The size
of each element is specified by size .

The contents of the array must be in ascending order according to a user supplied
comparison function, compare . The compare function is called with two arguments that
must point to the key object and to an array member, in that order. Also, compare must
return an integer that is less than, equal to, or greater than zero for the key object to be
respectively considered less than, equal to or greater than the array element.

SEE ALSO
qsort — Perform quick sort.

bsearch bsearch

MOTOROLA DSP563CCC User’s Manual A-19

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

char* stuff[6] =

{

 "bald", "driving", "feet”, "flintstone", "fred", "on"

};

int compare (const void *key, const void *aelement)

{

return (strcmp(*(char*) key, *(char*) aelement));

}

void main()

{

char* p;

char* key = "bald";

p = bsearch(&key, stuff, 6, sizeof(char*), compare);

if (p)

{

printf("YES, fred flintstone drives on bald feet\n");

}

else

{

printf("NO, sam the butcher brings alice the meat\n");

}

}

prints to standard output:

YES, fred flintstone drives on bald feet

calloc calloc

A-20 DSP563CCC User’s Manual MOTOROLA

NAME
calloc — Dynamically allocate zero-initialized storage for objects.

SYNOPSIS
#include <stdlib.h>

void* calloc (size_t nmemb, size_t size);

DESCRIPTION
The calloc function allocates space for an array of nmemb objects, each of whose size
is size . The space is initialized to all bits equal zero. If space can not be allocated, calloc
returns a NULL pointer.

SEE ALSO
free — Free dynamically allocated storage.

malloc — Dynamically allocate uninitialized storage.

realloc — Alter size of previously dynamically allocated storage.

calloc calloc

MOTOROLA DSP563CCC User’s Manual A-21

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

int* iptr;

/* allocate space for 709 integers */

void main()

{

iptr= (int*) calloc(709, sizeof(int));

if (iptr != NULL)

{

/* check first entry for zero initialization */

if (*iptr != 0)

{

printf("error: calloc failed to initialize\n");

}

else

{

printf("success: calloc ok\n");

}

}

else

{

printf("error: calloc failed\n");

}

}

prints to standard output:

success: calloc ok

ceil ceil

A-22 DSP563CCC User’s Manual MOTOROLA

NAME
ceil — Ceiling function.

SYNOPSIS
#include <math.h>

double ceil (double x);

DESCRIPTION
The ceil function returns the smallest integer greater than or equal to x.

When the header file math.h is included, the default case will be in-line [see section A.3,
Forcing Library Routines Out-of-line].

SEE ALSO
floor — Floor function.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("ceil(7.09) == %f\n", ceil(7.09));

}

prints to standard output:

ceil(7.09) == 8.000000

clearerr clearerr

MOTOROLA DSP563CCC User’s Manual A-23

NAME
clearerr — Clear any error indicators associated with a specified stream.

SYNOPSIS
#include <stdio.h>

void clearerr (FILE *stream);

DESCRIPTION
The clearerr function clears the end-of-file and error indicators for the specified stream.

EXAMPLE
#include <stdio.h>

void main ()

{

FILE *stream = tmpfile (); /* initially empty. */

clearerr (stream);

printf (“end-of-file indicator is: %d\n”, feof (stream));

}

prints to standard output:

end-of-file indicator is: 0

cos cos

A-24 DSP563CCC User’s Manual MOTOROLA

NAME
cos — Cosine.

SYNOPSIS
#include <math.h>

double cos (double x);

DESCRIPTION
The cos function computes and returns the cosine of x, measured in radians.

SEE ALSO
acos — Arc cosine of an angle.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("cos(45.0) == %f\n", cos(45.0));

}

prints to standard output:

cos(45.0) == 0.525322

cosh cosh

MOTOROLA DSP563CCC User’s Manual A-25

NAME
cosh — Hyperbolic cosine.

SYNOPSIS
#include <math.h>

double cosh (double x);

DESCRIPTION
The cosh function computes and returns the hyperbolic cosine of x. If the value of x is
too large, a range error occurs, setting errno to ERANGE and causes cosh to return
HUGE_VAL .

SEE ALSO
sinh — Hyperbolic sin.

tanh — Hyperbolic tangent.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("cosh(3.1415) == %f\n", cosh(3.1415));

}

prints to standard output:

cosh(3.1415) == 11.590800

div div

A-26 DSP563CCC User’s Manual MOTOROLA

NAME
div — Integer division with remainder.

SYNOPSIS
#include <stdlib.h>

div_t div (int numer, int denom);

DESCRIPTION
The div function computes the quotient and remainder of the division of the numerator
numer by the denominator denom and returns them in a structure of type div_t . If the
result can not be represented, the behavior is undefined.

SEE ALSO
ldiv — Long integer division with remainder.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

div_t result;

int numer = 709, denom = 56;

result = div(numer, denom);

printf("quotient == %d\t", result.quot);

printf("remainder == %d\n", result.rem);

}

prints to standard output:

quotient == 12 remainder == 37

exit exit

MOTOROLA DSP563CCC User’s Manual A-27

NAME
exit — Terminate program normally.

SYNOPSIS
#include <stdlib.h>

void exit (int status);

DESCRIPTION
The exit function causes normal program termination to occur. Any functions registered
with the function atexit are called in the order in which they where registered. Status is
returned to the environment (run563). If more than one call is made to exit , the result is
undefined.

SEE ALSO
abort — Cause a program to terminate abnormally.

atexit — Register functions to be called at normal program termination.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

printf("-- exit test --\n");

exit (0);/* return with 0 status */

printf("Error: exit made this unreachable\n");

}

prints to standard output:

-- exit test --

exp exp

A-28 DSP563CCC User’s Manual MOTOROLA

NAME
exp — Exponential, ex.

SYNOPSIS
#include <math.h>

double exp (double x);

DESCRIPTION
The exp function computes and returns ex. If the value of x is too large, a range error
occurs with errno being set to ERANGE and exp returning HUGE_VAL . If the value of x
is too small, a range error will also occur with errno being set to ERANGE and exp
returning 0.0.

SEE ALSO
ldexp — Multiplying a number by a power of two.

pow — Raising a number to a power.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("exp(7.09) == %f\n", exp(7.09));

}

prints to standard output:

exp(7.09) == 1199.900000

fabs fabs

MOTOROLA DSP563CCC User’s Manual A-29

NAME
fabs — Absolute value of a double.

SYNOPSIS
#include <math.h>

double fabs (double x);

DESCRIPTION
The fabs function computes and returns the absolute value of x.

When the header file math.h is included, the default case will be in-line [see section A.3,
Forcing Library Routines Out-of-line].

SEE ALSO
abs — Absolute value of an integer.

labs — Absolute value of a long integer.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double pos, neg = -7.09;

pos = fabs(neg);

printf("-- absolute value of %f == %f --\n", neg, pos);

}

prints to standard output:

-- absolute value of -7.090000 == 7.090000 --

fclose fclose

A-30 DSP563CCC User’s Manual MOTOROLA

NAME
fclose — Close a stream.

SYNOPSIS
#include <stdio.h>

int fclose (FILE *);

DESCRIPTION
The function fclose flushes all output on the specified stream, and disassociates the
stream from the file on the host. The function fclose returns EOF if there are any
problems, otherwise 0.

SEE ALSO
fprintf — Used to write formatted output to a stream.

EXAMPLE
#include <stdio.h>

void main()

{

fprintf (stdout, “see me second”);

fprintf (stderr, “see me first\n”);

fclose (stdout);

}

prints to combined standard error and standard output:

see me first

see me second

Note that stdout is by default line buffered, while stderr is not. The call to fclose

causes the pending output on stdout to be flushed.

feof feof

MOTOROLA DSP563CCC User’s Manual A-31

NAME
feof — Test the end-of-file indicator of a specified stream.

SYNOPSIS
#include <stdio.h>

int feof (FILE *);

DESCRIPTION
The function feof function tests the end-of-file indicator associated with the specified
stream. It returns non-zero if and only if the end-of-file indicator is set.

SEE ALSO
fopen — Used to associate a stream with a file on the host’s disk.

fseek — Used to alter the file position indicator associated with a stream.

fprintf — Used to write formatted output to a stream.

EXAMPLE
#include <stdio.h>

void main()

{

FILE *somefile = fopen (“somefile”, “rb+”);

(void) fseek (somefile, 0L, SEEK_END);
(void) fgetc (somefile);

fprintf (stdout, “are we at the file’s end? %s\n”,

feof (somefile) ? “yes” : “no”);

}

prints to standard output:

are we at the file’s end? yes

ferror ferror

A-32 DSP563CCC User’s Manual MOTOROLA

NAME
ferror — Test the error indicator of a stream.

SYNOPSIS
#include <stdio.h>

int ferror (FILE *);

DESCRIPTION
The function ferror function tests the error indicator associated with the specified stream.
It returns non-zero if and only if the error indicator is set. ferror should be used following
one or more stream I/O function calls.

fflush fflush

MOTOROLA DSP563CCC User’s Manual A-33

NAME
fflush — Flush all pending output associated with a stream.

SYNOPSIS
#include <stdio.h>

void fflush (FILE*);

DESCRIPTION
The function fflush causes any pending output associated with the specified stream to
be written to the output device.

SEE ALSO
fprintf — Used to write formatted output to a stream.

EXAMPLE
#include <stdio.h>

void main()

{

fprintf (stdout, “see me second”);

fprintf (stderr, “see me first\n”);

fflush (stdout);

}

prints to combined standard error and standard output:

see me first

see me second

Note that stdout is by default line buffered, while stderr is not. The call to fflush

causes the pending output on stdout to be flushed.

fgetc fgetc

A-34 DSP563CCC User’s Manual MOTOROLA

NAME
fgetc — Read a character from the specified stream.

SYNOPSIS
#include <stdio.h>

int fgetc (FILE *stream);

DESCRIPTION
The function fgetc will retrieve the next input character from the specified stream. If the
stream is associated with a file on the disk, then the file position indicator is advanced.
On error, fgetc returns EOF.

SEE ALSO
fputc — Write a character to a stream.

EXAMPLE
#include <stdio.h>

void main ()

{

char value = (char) fgetc (stdin);

while (EOF != value)

{

fputc (value, stdout);

value = (char) fgetc (stdin);

}

}

will echo all characters from standard input to standard output until the input is

exhausted.

fgetpos fgetpos

MOTOROLA DSP563CCC User’s Manual A-35

NAME
fgetpos — Get the value of the file position indicator associated with a

stream.

SYNOPSIS
#include <stdio.h>

int fgetpos (FILE *stream, fpos_t *pos);

DESCRIPTION
The function fgetpos fetches the value of the file position indicator associated with
stream and stores it in the object pointed to by pos . fgetpos returns zero if it was
successful. The value of the file position indicator is meaningless except as an argument
to the function fsetpos.

SEE ALSO
fopen — Open a file on the host’s disk and associate it with a stream.

fseek — Used to alter the file position indicator associated with a stream.

fsetpos — Set the value of the file position indicator associated with a

stream.

EXAMPLE
#include <stdio.h>

void main ()

{

FILE *preexisting = fopen (“already.here”, “r”);

fpos_t pos;

(void) fgetpos (preexisting, & pos);

(void) fseek (preexisting, 0L, SEEK_END);

(void) fsetpos (preexisting, & pos);

}

will open a hypothetical pre-existing file on the disk, record the initial position in pos, seek
to the end of the file, and finally restore the initial value of the file position indicator.

fgets fgets

A-36 DSP563CCC User’s Manual MOTOROLA

NAME
fgets — Read a string from the specified stream.

SYNOPSIS
#include <stdio.h>

char *fgets (char *s, int n, FILE *stream);

DESCRIPTION
The function fgets will read at most n -1 characters from the specified stream. fgets will
not read past a newline character. The characters are stored in memory starting at the
location pointed to by s. fgets returns s if it was successful, NULL otherwise. fgets will
update the file position indicator for any characters read.

SEE ALSO
fputs — Write a string to a stream.

rewind — Reset the file position indicator associated with a stream to the
beginning of the file.

EXAMPLE
#include <stdio.h>

void main ()

{

FILE *disk_file = fopen (“newfile”, “a+”);

char one_line[64];

fputs (“read this line\n” “but not this line.\n”, disk_file);

rewind (disk_file);

fgets (one_line, 64, disk_file);

fputs (one_line, stdout);

}

will open a new file on the disk named “newfile”. Two lines will be written to the new file,
and the first line will be read back using fgets. The retrieved line is then printed to
standard output as follows:

read this line

floor floor

MOTOROLA DSP563CCC User’s Manual A-37

NAME
floor — Floor function.

SYNOPSIS
#include <math.h>

double floor (double x);

DESCRIPTION
The floor function returns the largest integer not greater than x.

When the header file math.h is included, the default case will be in-line [see section A.3,
Forcing Library Routines Out-of-line].

SEE ALSO
ceil — Ceiling function.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("floor(7.09) == %f\n", floor(7.09));

}

prints to standard output:

floor(7.09) == 7.000000

fmod fmod

A-38 DSP563CCC User’s Manual MOTOROLA

NAME
fmod — Floating point remainder.

SYNOPSIS
#include <math.h>

double fmod (double x, double y);

DESCRIPTION
The fmod function computes and returns the floating point remainder r of x / y. The
remainder, r, has the same sign as x and x == i * y + r, where |r| < |y|. If x and y can not
be represented, the result is undefined.

When the header file math.h is included, the default case will be in-line [see section A.3,
Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("fmod(-10.0, 3.0) == %f\n", fmod(-10.0, 3.0));

}

prints to standard output:

fmod(-10.0, 3.0) == -1.000000

fopen fopen

MOTOROLA DSP563CCC User’s Manual A-39

NAME
fopen — Open a named file on the host’s disk.

SYNOPSIS
#include <stdio.h>

FILE* fopen (const char *filename, const char *mode);

DESCRIPTION
The fopen function attempts to open a named file for access via a stream. If fopen is
able to open the specified file, then the new stream associated with that file is returned. If
fopen fails, then it returns NULL . The mode argument indicates the type of the stream,
and how the stream may be accessed:

“r” — text type, read only,

“w” — text type, write only,

“a” — text type, append only (write after end of current file),

“rb” — binary type, read only,

“wb” — binary type, write only,

“ab” — binary type, append only (write after end of current file),

“r+” — text type, read and write,

“w+” — text type, read and write (any pre-existing file is destroyed),

“a+” — text type, append only (read/write after end of current file),

“rb+” — binary type, read and write,

“wb+” — binary type, read and write (any pre-existing file is destroyed),

“ab+” — binary type, append only (read/write after end of current file).

Note that opening a file that does not exist will fail if r is the first character in the mode
string. When opened, the stream is initially line buffered.

SEE ALSO
fputs — Write a string to a stream.

fgets — Read a string from a stream.

fprintf — Used to write formatted output to a stream.

fopen fopen

A-40 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

void main ()

{

FILE *stream = fopen (“file.new”, “w”);

char data[64];

fprintf (stream, “verify this\n”);

fclose (stream);

stream = fopen (“file.new”, “r”);

fgets (data, 64, stream);

fputs (data, stdout);

}

This example opens an new text file, writes to the associated stream, and closes that
stream. It then reopens the file and displays the first line of that file on standard output:

verify this

fprintf fprintf

MOTOROLA DSP563CCC User’s Manual A-41

NAME
fprintf — Write formatted output to a stream.

SYNOPSIS
#include <stdio.h>

int fprintf (FILE *stream, const char *format, ...);

DESCRIPTION
The function fprintf functions exactly like the function printf , except that the output is
directed to the specified stream rather than being automatically directed to standard
output. Please use the description of argument values in the description of the printf
function.

SEE ALSO
printf — Used to write formatted output to a standard output.

EXAMPLE
#include <stdio.h>

void main ()

{

fprintf (stdout, “hello world\n”);

}

Will cause the following output to be printed to standard output:

hello world

fputc fputc

A-42 DSP563CCC User’s Manual MOTOROLA

NAME
fputc — Write a single character to a stream.

SYNOPSIS
#include <stdio.h>

int fputc (int c, FILE *stream);

DESCRIPTION
The function fputc writes the character c to the specified stream.

EXAMPLE
#include <stdio.h>

void main ()

{

fputc ((int) ‘S’, stdout);

fputc ((int) ‘h’, stdout);

fputc ((int) ‘a’, stdout);

fputc ((int) ‘d’, stdout);

fputc ((int) ‘r’, stdout);

fputc ((int) ‘a’, stdout);

fputc ((int) ‘c’, stdout);

fputc ((int) ‘k’, stdout);

fputc ((int) ‘\n’, stdout);

}

Will cause the following output to be printed to standard output:

Shadrack

fputs fputs

MOTOROLA DSP563CCC User’s Manual A-43

NAME
fputs — Write a string to a stream.

SYNOPSIS
#include <stdio.h>

int fputs (const char *s, FILE *stream);

DESCRIPTION
The function fputc writes the string s to the specified stream. The trailing ‘\0’ in s is not
written to the stream.

EXAMPLE
#include <stdio.h>

void main ()

{

fputs (“hand me down pumas\n”, stdout);

}

Will cause the following output to be printed to standard output:

hand me down pumas

fread fread

A-44 DSP563CCC User’s Manual MOTOROLA

NAME
fread — Read data directly from a stream.

SYNOPSIS
#include <stdio.h>

size_t fread (void *ptr, size_t size, size_t nmemb, FILE *stream);

DESCRIPTION
The function fread reads raw data from the specified stream. The data is stored in
memory starting with the location pointed to by ptr . The quantity of data is size *
nmemb . fread returns the number of elements successfully read.

SEE ALSO
printf — Used to write formatted output to a standard output.

fopen — Open a file and associate it with a stream.

EXAMPLE
Assume that the disk file “professor” has as its contents the following string, including the
trailing ‘\0’:

“What’s another word for pirate treasure?”

The following C program uses fread:

#include <stdio.h>

void main ()

{

FILE *booty = fopen (“professor”, “r”);

char buffer[64];

fread (buffer, 63, sizeof (char), booty);

fprintf (stdout, buffer);

}

and will cause the following output to be printed to standard output:

What’s another word for pirate treasure?”

free free

MOTOROLA DSP563CCC User’s Manual A-45

NAME
free — Free storage allocated by calloc, malloc, and realloc.

SYNOPSIS
#include <stdlib.h>

void free(void* ptr);

DESCRIPTION
The free function causes the space pointed to by ptr to be deallocated. Once
deallocated it is available to be used again by future dynamic memory allocation
requests. If ptr is NULL , free returns immediately. If the space pointed to by ptr has
already been deallocated by a previous call to free or realloc , the behavior is undefined.

SEE ALSO
calloc — Dynamically allocate zero-initialized storage.

malloc — Dynamically allocate uninitialized storage.

realloc — Alter size of previously dynamically allocated storage.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

char* alloc;

if ((alloc = (char*) malloc(709)) == NULL)

{

printf("malloc error\n");

exit (-1);

}

/* free 709 words of memory */

free(alloc);

}

freopen freopen

A-46 DSP563CCC User’s Manual MOTOROLA

NAME
freopen — Open a named file on the disk, to be accessed via the specified

stream.

SYNOPSIS
#include <stdio.h>

FILE *freopen (const char *filename, const char *mode, FILE *stream);

DESCRIPTION
The function freopen opens the named disk file in the same manner as fopen . However,
freopen associates that file with the specified stream. If successful, freopen returns its
argument stream , and if unsuccessful, it returns NULL . The range of acceptable values
for the mode argument are the same as those for fopen .

SEE ALSO
printf — Used to write formatted output to standard output.

EXAMPLE
#include <stdio.h>

void main ()

{

freopen (“diskfile”, “w”, stdout);

printf (“hello world\n”);

}

This example redirects standard output to a file on the disk via freopen . The “hello world”
output will not appear on the normal standard output device, but rather in the file
“diskfile”.

frexp frexp

MOTOROLA DSP563CCC User’s Manual A-47

NAME
frexp — Break a floating point number into mantissa and exponent.

SYNOPSIS
#include <math.h>

double frexp (double value, int* exp);

DESCRIPTION
The frexp function breaks a floating point number into a normalized fraction (the
mantissa) and an integral power of 2 (the exponent). The frexp function returns the
mantissa and stores the exponent in the integer pointed to by exp . The mantissa is
returned with a magnitude in the range [1/2, 1] or zero, such that value equals the
mantissa times 2*exp . If value is zero, both the exponent and mantissa are zero.

SEE ALSO
modf — Decomposing a double into mantissa and exponent.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

int exp;

double mant;

mant = frexp(70.9, &exp);

printf("mantissa == %f\texponent == %d\n", mant, exp);

}

prints to standard output:

mantissa == 0.553906 exponent == 7

fscanf fscanf

A-48 DSP563CCC User’s Manual MOTOROLA

NAME
fscanf — Read formatted input from a stream.

SYNOPSIS
#include <stdio.h>

int fscanf (FILE *stream, const char *format, ...);

DESCRIPTION
The function fscanf reads input from the specified stream. It uses the string format as a
guide for interpreting the input and storing values in memory. Subsequent arguments to
fscanf are used as pointers to objects in memory that will receive the input values read
from the stream.

The format string is composed of directives. These are parsed from left to right from the
format string, and indicate how the input from the specified stream should be processed.

If fscanf fails to apply a directive, then it returns. Directives are composed of either
white-space characters or normal characters. White space character sequences indicate
that fscanf should read input from the specified stream up to the first non-white-space
character. Directives that consist of non-white-space characters are processed in the
following manner: input is read from the specified stream until the input character is not a
member of the set of characters comprising the directive. Finally, directives can be
conversion specifications; these directives begin with the ‘%’ character. They describe
how fscanf should parse input, and how fscanf should synthesize a value to be stored in
memory.

Conversion specifications are processed as follows. First, the stream is read until all
white-space characters have been exhausted, unless ‘[‘, ‘c’, or ‘n’ is part of the
conversion specification. Second, a value is derived from the input stream according to
the conversion specifier. A conversion specifier may be one of the following:

‘d’ — match a signed, decimal integer.

‘i’ — match a signed integer, whose base is determined in the same
manner as a C integer constant.

‘o’ — match an octal integer.

‘u’ — match an unsigned, decimal integer.

‘x’ — match a signed, hexadecimal integer. (‘X’ is also valid).

‘e’,’f’,’g’ — match a floating-point number. (‘E’ ,’F’ and ’G’ are also valid).

‘s’ — match a sequence of non-white-space characters, essentially
scan a token string.

‘[‘ — match a non-empty sequence of characters from a set of
expected characters, which are bounded by a following ‘]’ .

fscanf fscanf

MOTOROLA DSP563CCC User’s Manual A-49

‘c’ — match a sequence of characters, as specified by the field width.
As a default, scan only one character.

‘n’ — don’t match anything, just store the number of characters read
from the input stream during this call to fscanf .

‘%’ — match a ‘%’ character.

fscanf returns EOF if an input failure is detected before any conversions take place.
Otherwise it returns the number of assignments made. Note that an optional assignment
suppression character ‘*’ may follow the initial ‘%’. This character will cause fscanf to
discard the converted value without advancing along the list of object pointers.

SEE ALSO
scanf — Read formatted input from standard input.

sscanf — Read formatted input from a string.

EXAMPLES
(a) The following program will, assuming that the input pending on standard input is “my
98”, store the three characters ‘m’, ‘y’, ‘\0’ will be stored in word[], and 98 will be stored in
number.

#include <stdio.h>

void main ()

{

char word[8];

int number;

fscanf (stdin, “ %s %d”, word, & number);

}

(b) The following program will, assuming that the input pending on standard input is “yall
come”, store the following five characters in the array word: ‘y’, ‘a’, ‘l’, ‘l’, ‘\0’.

#include <stdio.h>

void main ()

{

char word[8];

fscanf (stdin, “%[lay]”, word);

}

fseek fseek

A-50 DSP563CCC User’s Manual MOTOROLA

NAME
fseek — Set the file position indicator associated with a stream.

SYNOPSIS
#include <stdio.h>

int fseek (FILE *stream, long int offset, int whence);

DESCRIPTION
The function fseek will set the file position indicator associated with the specified stream,
according to the values of offset plus an initial value indicated by whence . The return
value is -1 for an improper seek, 0 otherwise. Initial values derived of whence values are
as follows:

SEEK_SET — The initial value is the beginning of the file.

SEEK_CUR — The initial value is the current position in the file.

SEEK_END — The initial value is the end of the file.

The value of offset must either be zero or the value returned by a call to ftell .

SEE ALSO
fopen — Open a disk file and associate it with a stream.

fgetc — Read a single character from a stream.

fclose — Close a stream.

EXAMPLES
The following function will read the last character in a text file specified by the parameter
name .

#include <stdio.h>

char last_in_file (char *name)

{

FILE *tmp = fopen (name, “r”);

char return_value;

(void) fseek (tmp, -1L, SEEK_END);

return_value = (char) fgetc (tmp);

fclose (tmp);

return return_value;

}

fsetpos fsetpos

MOTOROLA DSP563CCC User’s Manual A-51

NAME
fsetpos — Set the file position indicator associated with a stream.

SYNOPSIS
#include <stdio.h>

int fsetpos (FILE *stream, const fpos_t *pos);

DESCRIPTION
The function fsetpos will change the file position indicator associated with the specified
stream. The value of pos must be the return value from a prior call to fgetpos . Note that
a successful call to fsetpos will undo any effect of an immediately preceding ungetc on
the same stream. If it is successful, fsetpos returns zero.

SEE ALSO
fgetpos — Obtain the file position indicator value associated with a stream.

EXAMPLES

#include <stdio.h>

void main ()

{

FILE *preexisting = fopen (“already.here”, “r”);

fpos_t pos;

(void) fgetpos (preexisting, & pos);

(void) fseek (preexisting, 0L, SEEK_END);

(void) fsetpos (preexisting, & pos);

}

will open a hypothetical pre-existing file on the disk, record the initial position in pos, seek
to the end of the file, and finally restore the initial value of the file position indicator.

ftell ftell

A-52 DSP563CCC User’s Manual MOTOROLA

NAME
ftell — Get the file position indicator associated with a stream.

SYNOPSIS
#include <stdio.h>

long int ftell (FILE *stream);

DESCRIPTION
The function ftell will return the value of the file position indicator for the specified
stream. The return value is usable only by the function fseek. ftell returns -1L.

SEE ALSO
fopen — Open a file and associate it with a stream.

fread — Read data from a stream.

putchar — Send character data to standard output.

fseek — Change the file position indicator associated with a stream.

EXAMPLE
#include <stdio.h>

main ()

{

FILE *stream = fopen (“file.abc”, “r”);

long int beginning = ftell (stream);

char send;

(void) fread (& send, sizeof (char), 1, stream);

putchar (send);

fseek (stream, beginning, SEEK_SET);

(void) fread (& send, sizeof (char), 1, stream);

putchar (send);

}

will read and print the first character in the file “file.abc” twice. ftell is used to reset the file
position indicator to the beginning of the file.

fwrite fwrite

MOTOROLA DSP563CCC User’s Manual A-53

NAME
fwrite — Write data directly to a stream.

SYNOPSIS
#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nmemb, FILE *stream);

DESCRIPTION
The function fwrite writes raw data to the specified stream. The data is drawn from
memory starting with the location pointed to by ptr . The quantity of data is size *
nmemb . fwrite returns the number of elements successfully written.

EXAMPLE
#include <stdio.h>

main ()

{

char message[] = “hand me down pumas”;

fwrite (message, sizeof (char), strlen (message), stdout);

}

will write the message “hand me down pumas” onto standard output.

getc getc

A-54 DSP563CCC User’s Manual MOTOROLA

NAME
getc — Read a character from the specified stream.

SYNOPSIS
#include <stdout.h>

int fgetc (FILE *stream);

DESCRIPTION
getc is equivalent to fgetc , except that getc may be implemented as a macro. If such is
the case, the argument stream may be evaluated more than once. This only becomes a
problem if evaluation of the argument has side effects.

SEE ALSO
fgetc — Read a character from a stream.

fputc — Write a character to a stream.

EXAMPLE
#include <stdio.h>

void main ()

{

char value = (char) getc (stdin);

while (EOF != value)

{

fputc (value, stdout);

value = (char) getc (stdin);

}

}

will echo all characters from standard input to standard output until the input is
exhausted.

getchar getchar

MOTOROLA DSP563CCC User’s Manual A-55

NAME
getchar — Read a character from standard input.

SYNOPSIS
#include <stdio.h>

int getchar (void);

DESCRIPTION
The function getchar reads the next character from standard input. If there is no pending
input, getchar returns EOF, otherwise the read character is cast to type int and returned.

SEE ALSO
fputc — Write a character to a stream.

EXAMPLE
#include <stdio.h>

void main ()

{

char value = (char) getchar ();

while (EOF != value)

{

fputc (value, stdout);

value = (char) getchar ();

}

}

will echo all characters from standard input to standard output until the input is
exhausted.

gets gets

A-56 DSP563CCC User’s Manual MOTOROLA

NAME
gets — Read a string from standard input.

SYNOPSIS
#include <stdio.h>

char *gets (char *s);

DESCRIPTION
The function fgets will read characters from standard input, and place them sequentially
in memory, starting with the location pointed to by s. gets will not read past a newline
character, or past the end of the file. The characters are stored in memory starting at the
location pointed to by s. gets returns s if it was successful, NULL otherwise. gets will
update the file position indicator for any characters read. If gets encounters the end of
file on its first read of standard input, NULL is returned. gets does not append a ‘\0’ to
the array of characters read.

SEE ALSO
fgets — Read a string from a stream.

puts — Read a string from a stream.

EXAMPLE
#include <stdio.h>

void main ()

{

char line_buffer[BUFSIZ];

puts (gets (line_buffer));

}

will echo a newline-terminated line of input from standard input onto standard output.
Note that gets doesn’t read past the newline; puts supplies one by definition.

isalnum isalnum

MOTOROLA DSP563CCC User’s Manual A-57

NAME
isalnum — Test for alphanumeric character.

SYNOPSIS
#include <ctype.h>

int isalnum(int c);

DESCRIPTION
The isalnum function returns a nonzero value for any alphabetic or numeric character;
zero is returned in all other cases. This function is provided both as an in-line and out-of-
line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isalnum(’c’)) && (isalnum(’1’)))

{

printf("c, 1 -- alpha and numeric\n");

}

if (! (isalnum(’@’)))

{

printf("@ -- neither alpha nor numeric\n");

}

}

prints to standard output:

c, 1 -- alpha and numeric

@ -- neither alpha nor numeric

isalpha isalpha

A-58 DSP563CCC User’s Manual MOTOROLA

NAME
isalpha — Test for alphabetic character.

SYNOPSIS
#include <ctype.h>

int isalpha(int c);

DESCRIPTION
The isalpha function returns a nonzero value for any alphabetic character; zero is
returned in all other cases. This function is provided both as an in-line and out-of-line
function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isalpha(’c’)))

{

printf("c -- alpha\n");

}

if (! (isalpha(’@’)) && ! (isalpha(’1’)))

{

printf("@, 1 -- non alpha\n");

}

}

prints to standard output:

c -- alpha

@, 1 -- non alpha

iscntrl iscntrl

MOTOROLA DSP563CCC User’s Manual A-59

NAME
iscntrl — Test for control character.

SYNOPSIS
#include <ctype.h>

int iscntrl(int c);

DESCRIPTION
The iscntrl function returns a nonzero value for any control character; zero is returned in
all other cases. A control character is any character that is NOT a letter, digit,
punctuation, or ‘ ’ (the space character). This function is provided both as an in-line and
out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

/* check the "beep" character */

if ((iscntrl(0x07)))

{

printf("\"beep\" (0x07) -- control character\n");

}

if (! (iscntrl(’@’)))

{

printf("@ -- not control character\n");

}

}

prints to standard output:

"beep" (0x07) -- control character

@ -- not control character

isdigit isdigit

A-60 DSP563CCC User’s Manual MOTOROLA

NAME
isdigit — Test for numeric character.

SYNOPSIS
#include <ctype.h>

int isdigit(int c);

DESCRIPTION
The isdigit function returns a nonzero value for any decimal character; zero is returned
in the false case. This function is provided both as an in-line and out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isdigit(’1’)))

{

printf("1 -- is a decimal character\n");

}

if (! (isdigit(’f’)))

{

printf("f -- not a decimal character\n");

}

}

prints to standard output:

1 -- is a decimal character

f -- not a decimal character

isgraph isgraph

MOTOROLA DSP563CCC User’s Manual A-61

NAME
isgraph — Test for printing character, excluding space and tab.

SYNOPSIS
#include <ctype.h>

int isgraph(int c);

DESCRIPTION
The isgraph function returns a nonzero value for any printable character, excluding
space (‘ ’) and tab (‘\t’); zero is returned in all other cases. This function is provided both
as an in-line and out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

/* check the "beep" character */

if (! (isgraph (’ ’)))

{

printf("space -- not \"graph\" character\n");

}

if ((isgraph (’f’)))

{

printf("f -- \"graph\" character\n");

}

}

prints to standard output:

space -- not "graph" character

f -- "graph" character

islower islower

A-62 DSP563CCC User’s Manual MOTOROLA

NAME
islower — Test for lower-case alphabetic characters.

SYNOPSIS
#include <ctype.h>

int islower(int c);

DESCRIPTION
The islower function returns a nonzero value for any lower-case alphabetic character;
zero is returned in all other cases. This function is provided both as an in-line and out-of-
line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((islower(’a’)))

{

printf("a -- lower case character\n");

}

if (! (islower(’F’)))

{

printf("F -- not a lower case character\n");

}

}

prints to standard output:

a -- lower case character

F -- not a lower case character

isprint isprint

MOTOROLA DSP563CCC User’s Manual A-63

NAME
isprint — Test for printing character, excluding ’\t’.

SYNOPSIS
#include <ctype.h>

int isprint(int c);

DESCRIPTION
The isprint function returns a nonzero value for any printable character, excluding the
tab character (’\t’); zero is returned in all other cases. This function is provided both as an
in-line and out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isprint(’ ’)))

{

printf("space -- \"print\" character\n");

}

if (! (isprint(’\t’)))

{

printf("tab -- not \"print\" character\n");

}

}

prints to standard output:

space -- "print" character

tab -- not "print" character

ispunct ispunct

A-64 DSP563CCC User’s Manual MOTOROLA

NAME
ispunct — Test for punctuation character.

SYNOPSIS
#include <ctype.h>

int ispunct (int c);

DESCRIPTION
The ispunct function returns a nonzero value for any punctuation character; zero is
returned in all other cases. A punctuation character is one that is printable, not a digit, not
a letter, and not a space (‘ ’ or ‘\t’).This function is provided both as an in-line and out-of-
line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((ispunct(’,’)))

{

printf("comma -- \"punct\" character\n");

}

if (! (ispunct(’\t’)))

{

printf("tab -- not \"punct\" character\n");

}

}

prints to standard output:

comma -- "punct" character

tab -- not "punct" character

isspace isspace

MOTOROLA DSP563CCC User’s Manual A-65

NAME
isspace — Test for white-space character.

SYNOPSIS
#include <ctype.h>

int isspace(int c);

DESCRIPTION
The isspace function returns a nonzero value for any standard white-space character;
zero is returned in all other cases. The standard white-space characters are space (‘ ’),
form feed (‘\f’), new-line (‘\n’), carriage return (‘\r’), horizontal tab (‘\t’), and vertical tab
(‘\v’). This function is provided both as an in-line and out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isspace(’ ’)))

{

printf("space -- white-space character\n");

}

if (! (isspace(’@’)))

{

printf("@ -- not white-space character\n");

}

}

prints to standard output:

space -- white-space character

@ -- not white-space character

isupper isupper

A-66 DSP563CCC User’s Manual MOTOROLA

NAME
isupper — Test for upper-case alphabetic character.

SYNOPSIS
#include <ctype.h>

int isupper(int c);

DESCRIPTION
The isupper function returns a nonzero value for any upper-case alphabetic character;
zero is returned in all other cases. This function is provided both as an in-line and out-of-
line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isupper(’F’)))

{

printf("F -- upper-case character\n");

}

if (! (isupper(’f’)))

{

printf("f -- not an upper-case character\n");

}

}

prints to standard output:

F -- upper-case character

f -- not an upper-case character

isxdigit isxdigit

MOTOROLA DSP563CCC User’s Manual A-67

NAME
isxdigit — Test for hexadecimal numeric character.

SYNOPSIS
#include <ctype.h>

int isxdigit (int c);

DESCRIPTION
The isxdigit function returns a nonzero value for any hexadecimal digit; zero is returned
in all other cases. This function is provided both as an in-line and out-of-line function.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

if ((isxdigit (’F’)))

{

printf("F -- hexadecimal character\n");

}

if (! (isxdigit (’G’)))

{

printf("G -- not a hexadecimal character\n");

}

}

prints to standard output:

F -- hexadecimal character

G -- not a hexadecimal character

labs labs

A-68 DSP563CCC User’s Manual MOTOROLA

NAME
labs — Absolute value of a long integer.

SYNOPSIS
#include <stdlib.h>

long int labs (long int j);

DESCRIPTION
The labs function returns the absolute value of the long integer j.

SEE ALSO
abs — Absolute value of an integer.

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main ()

{

long int j = -19089709L;

printf ("labs (-19089709l) == %ld\n", labs (j));

}

prints to standard output:

labs (-19089709l) == 19089709

ldexp ldexp

MOTOROLA DSP563CCC User’s Manual A-69

NAME
ldexp — Multiply floating point number by a power of two.

SYNOPSIS
#include <math.h>

double ldexp(double x, int exp);

DESCRIPTION
The ldexp function returns x * 2exp . If the result exceeds HUGE_VAL , errno is set to
ERANGE and the value HUGE_VAL is returned with the same sign as x.

SEE ALSO
exp — Raising e to a power.

pow — Raising a floating point number to a power.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("ldexp(7.09,4) == %f\n", ldexp(7.09,4));

}

prints to standard output:

ldexp(7.09,4) == 113.440000

ldiv ldiv

A-70 DSP563CCC User’s Manual MOTOROLA

NAME
ldiv — Long integer division with remainder.

SYNOPSIS
#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

DESCRIPTION
The ldiv function computes the quotient and remainder of numer / denom and returns
the result in a structure of type ldiv_t . If the result cannot be represented, the result is
undefined.

SEE ALSO
div — Integer division with remainder.

EXAMPLE
Please see the include file stdlib.h for the definition of ldiv_t .

#include <stdio.h>

#include <stdlib.h>

void main()

{

result;

long numer = 709, denom = 56;

result = ldiv(numer, denom);

printf("quotient == %ld\t", result.quot);

printf("remainder == %ld\n", result.rem);

}

prints to standard output:

quotient == 12 remainder == 37

log log

MOTOROLA DSP563CCC User’s Manual A-71

NAME
log — Natural logarithm, base e.

SYNOPSIS
#include <math.h>

double log(double x);

DESCRIPTION
The log function computes the natural logarithm of x. If the value of x is less than zero,
errno is set to EDOM and the value HUGE_VAL is returned. If x is equal to zero, errno
is set to ERANGE and the value HUGE_VAL is returned.

SEE ALSO
exp — Raising e to a power.

log10 — Base 10 logarithm.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("log(7.09) == %f\n", log(7.09));

}

prints to standard output:

log(7.09) == 1.958680

log10 log10

A-72 DSP563CCC User’s Manual MOTOROLA

NAME
log10 — Base ten logarithm.

SYNOPSIS
#include <math.h>

double log10(double x);

DESCRIPTION
The log10 function computes the natural logarithm of x. If the value of x is less than
zero, errno is set to EDOM and the value HUGE_VAL is returned. If x is equal to zero,
errno is set to ERANGE and the value HUGE_VAL is returned.

SEE ALSO
exp — Raising e to a power.

log — Natural logarithm.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("log10(7.09) == %f\n", log10(7.09));

}

prints to standard output:

log10(7.09) == 0.850646

longjmp longjmp

MOTOROLA DSP563CCC User’s Manual A-73

NAME
longjmp — Execute a non-local jump.

SYNOPSIS
#include <setjmp.h>

void longjmp(jmp_buf env, int val);

DESCRIPTION
The longjmp function restores the calling environment referenced by env which must
have been initialized by a previous call to setjmp . If there has been no invocation of
setjmp , or if the function containing the call to setjmp has returned before the call to
longjmp , the behavior is undefined.

Upon completion of longjmp , program execution continues as if the corresponding call
to setjmp had returned with a value val ; if val is zero, 1 is returned.

All global and volatile variables have defined values as of the point in time that longjmp
was called; all register and non-volatile automatic variables will have undefined values.

For more information, see Chapter 6.

SEE ALSO
setjmp — Save a reference of the current calling environment for later use

by longjmp .

EXAMPLE
#include <stdio.h>

#include <setjmp.h>

jmp_buf env;

void func(void)

{

longjmp(env, -709);

}

 main()

{

if (setjmp(env) != 0)

{

longjmp longjmp

A-74 DSP563CCC User’s Manual MOTOROLA

printf("-- longjmp has been called --\n");

exit(1);

}

printf("-- setjmp called --\n");

func();

}

prints to standard output:

-- setjmp called --

-- longjmp has been called --

malloc malloc

MOTOROLA DSP563CCC User’s Manual A-75

NAME
malloc — Dynamically allocate uninitialized storage.

SYNOPSIS
#include <stdlib.h>

void* malloc(size_t size);

DESCRIPTION
The malloc function returns a pointer to the lowest word of a block of storage space that
is size words in size. If size exceeds the amount of memory available, malloc returns
NULL .

SEE ALSO
calloc — Dynamically allocate zero-initialized storage.

free — Free dynamically allocated memory.

realloc — Alter size of dynamically allocated storage.

EXAMPLE
#include <stdio.h>
#include <stdlib.h>

void main()
{

char *char_array;

if((char_array=(char*) malloc(709*sizeof(char))) == NULL)
{

printf("error: not enough memory\n");
exit(1);

}
else
{

printf("-- space for 709 chars allocated OK --\n");
}

}

prints to standard output:
-- space for 709 chars allocated OK --

mblen mblen

A-76 DSP563CCC User’s Manual MOTOROLA

NAME
mblen — Length of a multibyte character.

SYNOPSIS
#include <stdlib.h>

int mblen(const char* s, size_t n);

DESCRIPTION
The mblen function determines the number of characters in the multibyte character
pointed to by s. The mblen function is equivalent to

mbtowc ((wchar_t*) 0, s, n);

If s is a NULL pointer, mblen returns a zero. If s is not NULL, mblen returns
1. zero if s points to a NULL character,
2. the number of characters that comprise the multibyte character, or
3. -1 if an invalid multi-byte character is formed.

In no case will the return value exceed n or the MB_CUR_MAX macro.

SEE ALSO
mbtowc — Convert multibyte characters into wide characters.

wctomb — Convert wide characters into multibyte characters.

SPECIAL NOTE
The DSP56300 does not provide byte addressing, thus characters always require an
entire word of memory each. One way to better utilize data memory (with a run-time cost)
is to use the ANSI data type wchar_t and the special ANSI multibyte and wide character
library routines.

mblen mblen

MOTOROLA DSP563CCC User’s Manual A-77

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

char* gstr = NULL;

void main()

{

int max = MB_CUR_MAX;

char* strnull = gstr;

char* str1 = "709";

printf("mblen(strnull,5)==%d\n", mblen(strnull,5));

printf("mblen(str1, max) == %d\n", mblen(str1,max));

printf("mblen(\"abcdef\",5) == %d\n", mblen("abcedf",5));

printf("mblen(\"abcdef\",2) == %d\n", mblen("abcedf",2));

}

prints to standard output:

mblen(strnull, 5) == 0

mblen(str1, max) == 2

mblen("abcdef", 5) == 2

mblen("abcdef", 2) == 2

mbstowcs mbstowcs

A-78 DSP563CCC User’s Manual MOTOROLA

NAME
mbstowcs — Convert multibyte string to wide character string.

SYNOPSIS
#include <stdlib.h>

int mbstowcs(wchar_t* pwcs, const char* s, size_t n);

DESCRIPTION
The mbstowcs function converts the character string pointed to by s into a wide
character string pointed to by pwcs . Each character of the multibyte string is converted
as if by the mbtowc function. At most, n characters will be converted and stored in the
wide character string. Multibyte characters that follow a NULL character will not be
examined or converted. If s and pwcs overlap, the behavior is undefined.

If an invalid character is encountered, mbstowcs returns (size_t) -1. Otherwise,
mbstowcs returns the number of characters converted, not including the terminating
NULL character.

SEE ALSO
wcstombs — Convert wide character strings into multibyte strings.

SPECIAL NOTE
The DSP56100 does not provide byte addressing, thus characters always require an
entire word of memory each. One way to better utilize data memory (with a run-time cost)
is to use the ANSI data type wchar_t and the special ANSI multibyte and wide character
library routines.

mbstowcs mbstowcs

MOTOROLA DSP563CCC User’s Manual A-79

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

wchar_t warray[10];

void main()

{

char *array = "abcdefgh";

char *ptr = array;

int convert;

convert = mbstowcs(warray, array, 10);

printf("unpacked array looks like:\n");

while (*ptr != 0)

{

printf("%0.6x ", *ptr++);

}

printf("\n\n");

printf("%d chars packed, packed array looks like:\n", 8);

ptr = warray;

while (*ptr != 0)

{

printf("%0.6x \n", *ptr++);

}

printf("\n");

}

prints to standard output:

unpacked array looks like:

000061 000062 000063 000064 000065 000066 000067 000068

mbstowcs mbstowcs

A-80 DSP563CCC User’s Manual MOTOROLA

8 chars packed, packed array looks like:

006162
006364
006564
006768
000075
006e70
006163
006b65
006420
006172
000001
0015eb

mbtowc mbtowc

MOTOROLA DSP563CCC User’s Manual A-81

NAME
mbtowc — Convert a multibyte character to a wide character.

SYNOPSIS
#include <stdlib.h>

int mbtowc(wchar_t* pwc, const char* s, size_t n);

DESCRIPTION
The mbtowc function examines the multibyte (i.e., multi-character) string pointed to by s
and converts it into a wide character (wchar_t). At most, n and never more than
MB_CUR_MAX characters from s will be examined and converted.

If s is a NULL pointer, mbtowc returns zero. If s is not NULL, mbtowc returns
1. zero if s points to a NULL character,
2. the number of characters that comprise the multibyte character, or
3. -1 if an invalid multibyte character is formed.

In no case will the return value exceed n or the MB_CUR_MAX macro.

SEE ALSO
mblen — Determine the length of a multibyte character.

mbstowcs — Convert a multibyte string into a wide character string.

wctomb — Convert a wide character into a multibyte character.

SPECIAL NOTE
The DSP56100 does not provide byte addressing, thus characters always require an
entire word of memory each. One way to better utilize data memory (with a run-time cost)
is to use the ANSI data type wchar_t and the special ANSI multibyte and wide character
library routines.

mbtowc mbtowc

A-82 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

wchar_t wide = 0;

char* mbstr = "abcde";

int convert;

convert = mbtowc((wchar_t*) NULL, mbstr, 2);

printf("%d chars packed. wide == %0.6x\n", convert, wide);

convert = mbtowc(&wide, mbstr, strlen(mbstr));

printf("%d chars packed. wide == %0.6x\n", convert, wide);

convert = mbtowc(&wide, mbstr, 2);

printf("%d chars packed. wide == %0.6x\n", convert, wide);

}

prints to standard output:

2 chars packed. wide == 000000

2 chars packed. wide == 006162

2 chars packed. wide == 006162

memchr memchr

MOTOROLA DSP563CCC User’s Manual A-83

NAME
memchr — Find a character in a memory area.

SYNOPSIS
#include <string.h>

int memchr(const void* s, int c, size_t n);

DESCRIPTION
The memchr function finds the first occurrence of c (converted to an unsigned char) in
the memory area pointed to by s. The terminating null character is considered to be part
of the string. The memchr function returns a pointer to the located char or a NULL
pointer if the character is not found.

SEE ALSO
strchr — Find the first occurrence of a character in a string.

strcspn — Compute the length of the prefix of a string not containing any
characters contained in another string.

strpbrk — Find the first occurrence of a character from one string in another
string.

strrchr — Find the last occurrence of a character in a string.

strspn — Compute the length of the prefix of a string contained in another
string.

memchr memchr

A-84 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* string = "fred flintstone driving on bald feet";

char* result;

/* locate the occurrence of ’b’ */

result = memchr(string, ’b’, strlen(string));

printf("-- %s --\n", result);

}

prints to standard output:

-- bald feet --

memcmp memcmp

MOTOROLA DSP563CCC User’s Manual A-85

NAME
memcmp — Compare portion of two memory areas.

SYNOPSIS
#include <string.h>

int memcmp(const void* s1, const void* s2, size_t n);

DESCRIPTION
The memcmp function compares the first n words of the object pointed to by s1 with the
first n words of the object pointed to by s2. The comparison is lexicographical. The
memcmp function returns zero if the two areas compared are equal, a value greater
than zero if s1 is greater, or a value less than zero if s1 is smaller.

SEE ALSO
strncmp — Compare portion of two strings.

memcmp memcmp

A-86 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <string.h>

struct test

{

char cartoon[20];

int value;

} g1 = { "flintstones", 709 },

g2 = { "flintstones", 709 },

g3 = { "jetsons", 709 };

void main()

{
if (memcmp(&g1, &g2, sizeof(struct test)) != 0)
{

printf("error: flintstones differ\n");
}
else
{

printf("-- flintstones are flintstones --\n");
}

if (memcmp(&g1, &g3, sizeof(struct test)) != 0)
{

printf("-- flintstones are not jetsons --\n");
}
else
{

printf("error: flintstones are NOT jetsons\n");
}

}

prints to standard output:

-- flintstones are flintstones --

-- flintstones are not jetsons --

memcpy memcpy

MOTOROLA DSP563CCC User’s Manual A-87

NAME
memcpy — Copy from one area to another.

SYNOPSIS
#include <string.h>

int memcpy(void* s1, const void* s2, size_t n);

DESCRIPTION
The memcpy function copies n words from the area referenced by s2 into the area
specified by s1. If the source and destination areas overlap, the results are undefined.
The memcpy function returns the value of s1.

SEE ALSO
strcpy — Copy one string to another.

strncpy — Copy a portion of one string to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

struct test

{

char cartoon[20];

int value;

} g1, g2 = { "flintstones", 709 };

void main()

{

memcpy(&g1, &g2, sizeof(struct test));

printf("-- I watch the %s --\n", g1.cartoon);

}

prints to standard output:

-- I watch the flintstones --

memmove memmove

A-88 DSP563CCC User’s Manual MOTOROLA

NAME
memmove — Copy storage.

SYNOPSIS
#include <string.h>

int memmove(void* s1, const void* s2, size_t n);

DESCRIPTION
The memmove function copies n words from the area referenced by s2 into the area
specified by s1. The copy is done by first placing the n words into a temporary buffer and
then moving the temporary buffer into the final location, this allows the source and
destination areas to overlap.

SEE ALSO
memcpy — Copy one memory area to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

struct test

{

char cartoon[20];

int value;

} g1, g2 = {"flintstones", 709 };

void main()

{

memmove(&g1, &g2, sizeof(struct test));

printf("-- I watch the %s --\n", g1.cartoon);

}

prints to standard output:

-- I watch the flintstones --

memset memset

MOTOROLA DSP563CCC User’s Manual A-89

NAME
memset — Initialize memory area.

SYNOPSIS
#include <string.h>

int memset(void* s, int c, size_t n);

DESCRIPTION
The memset function copies the value c (converted to an unsigned char) into the first n
words of the object pointed to by s.

SEE ALSO
memcpy — Copy one memory area to another.

memset memset

A-90 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <string.h>

struct test

{

char cartoon[20];

int value;

};

void main()

{

struct test local;

/* auto struct local is initialized to all nines */

memset(&local, 9, sizeof(struct test));

/* random check */

if (local.cartoon[7] != 9)

{

printf("error: memset busted\n");

}

else

{

printf("-- memset OK --\n");

}

}

prints to standard output:

-- memset OK --

modf modf

MOTOROLA DSP563CCC User’s Manual A-91

NAME
modf — Break a double into it’s integral and fractional parts.

SYNOPSIS
#include <math.h>

double modf(double value, double* iptr);

DESCRIPTION
The modf function breaks value into its fractional and integral parts. The modf function
returns the fractional portion of value and stores the integral portion in the double object
pointed to by iptr .

SEE ALSO
frexp — Break a double into its mantissa and exponent

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double result;

printf("-- fractional == %f\t", modf(7.09, &result));

printf("integral == %f --\n", result);

}

prints to standard output:

-- fractional == 0.090000 integral == 7.000000 --

perror perror

A-92 DSP563CCC User’s Manual MOTOROLA

NAME
perror — Print error message.

SYNOPSIS
#include <stdio.h>

void perror(const char* s);

DESCRIPTION
The perror function prints out the string s followed by “: ” and the error message
associated with errno .

SEE ALSO
strerror — Print out error message associated with errno.

EXAMPLE
#include <stdio.h>
#include <math.h>
#include <errno.h>

void main()

{

double result;

result = asin(7.09);

if (result == 0.0 && errno == EDOM)

{

perror("asin perror test");

}

}

prints to standard output:

asin perror test: domain error

pow pow

MOTOROLA DSP563CCC User’s Manual A-93

NAME
pow — Raise a double to a power.

SYNOPSIS
#include <math.h>

double pow(double x, double y);

DESCRIPTION
The pow function computes and returns xy. If x is zero and y is less than zero, a domain
error occurs setting errno to EDOM and returning 0.0. If |xy| is greater than HUGE_VAL ,
errno is set to ERANGE and HUGE_VAL is returned.

SEE ALSO
exp — Raising e to a power.

ldexp — Multiplying a number by a power of 2.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("-- pow(2.0, 2.0) == %f --\n", pow(2.0, 2.0));

}

prints to standard output:

-- pow(2.0, 2.0) == 4.000000 --

printf printf

A-94 DSP563CCC User’s Manual MOTOROLA

NAME
printf — Print to standard output.

SYNOPSIS
#include <stdio.h>

int printf(const char* format, …);

DESCRIPTION
The printf function formats and writes a string to the standard output. Interpreting the
format specifier format left to right.

The format specifier, format , consists of ordinary characters, escape sequences, and
conversion specifications. The conversion specifications describe how arguments
passed to printf are converted for output. All non-conversion specifying portions of
format are sent directly to the standard output. If the number of arguments passed is
less than specified by the format string, printf will write non-deterministic garbage to the
standard output. If too many arguments are provided to printf , the extras will be
evaluated but otherwise ignored.

A conversion specification is introduced by the character %, and has the following form:

%[flags][field width][.precision][size]conversion character

where flags, field width, precision, h, l, L are optional.

Flags are for justification of output and printing of signs, blanks, decimal points, octal and
hexadecimal prefixes. Multiple flags may be utilized at once. The ANSI flags are:

- Left justify the result within the field. The default is right justified.

+ The result of a signed conversion will always have a sign (+ or -). The
default case provides only for -.

space If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space character will be prefixed
to the result. If the space and the + flags both appear, the space flag is
ignored. The default mode is no space .

The result is converted to an alternate form specified by the conversion
character. For o conversion, it forces the first digit of the result to be a
zero. For x (or X) conversion, the non-zero result will have 0x (0X)
prefixed to it. For e, E, f, g, and G conversions, the result will always
contain a decimal point character, even if no digits follow it. Additionally
for g and G, trailing zeros will not be removed.

printf printf

MOTOROLA DSP563CCC User’s Manual A-95

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the field
width ; no space padding is performed. If the 0 and - flags both appear,
the 0 flag will be ignored.

Each conversion takes place in character fields. The minimum size of the field can be
specified with the field width. If the converted result contains fewer characters than
specified by field width, the result will be left padded with spaces by default (see flags
above). The field width takes the form of a decimal integer or an asterisk ‘*’. When the
field width is an asterisk, the value is to be taken from an integer argument that precedes
the argument to be converted.

Precision specifies the minimum number of digits to appear for the d, i, o, u, x, X
conversions, the number of digits appear after the decimal point character for e, E, and f
conversions, the maximum number of significant digits for the g and G conversions, or
the maximum number of characters to be written from a string in the s conversion. The
precision takes the form of a ‘.’ followed by ‘*’, or by an optional decimal integer; if only
the period is specified, the precision is taken to be zero. If precision appears with any
other conversion character, the behavior is undefined.

Size specifies the argument size expected. There are three size specifiers defined by
ANSI. The h specifies that the argument for the conversion characters d, i, o, u, x, or X
will be unsigned short. The l specifies that the argument for the conversion characters d,
i, o, u, x, or X will be long integer. The L specifies that the argument for the conversion
characters e, E, f, g, or G will be long double.

There are 16 conversion characters; each is described below.

d, i The int argument is printed as a signed decimal number. The precision
specifies the minimum number of digits to appear; if the value being
printed can be represented in fewer digits, it is expanded with leading
zeros. The default precision is 1. The result of printing a zero with
precision zero is no characters (this is independent of padding
specified by field width).

o The unsigned int argument is printed as an unsigned octal number.
When used in association with the # flag, 0 will be prefixed to non-zero
results. The precision specifies the minimum number of digits to
appear; if the value can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
printing a zero with precision zero is no characters (this is independent
of padding specified by field width).

printf printf

A-96 DSP563CCC User’s Manual MOTOROLA

u The unsigned int argument is printed as an unsigned decimal number.
The precision specifies the minimum number of digits to appear; if the
value can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of printing a zero
with precision zero is no characters (this is independent of padding
specified by field width).

x, X The unsigned int argument is printed as an unsigned hexadecimal
number. Hexadecimal alpha characters (a,b,c,d,e,f) will be printed in
lower case when x is used and in upper case when X is used. When
used in association with the # flag, 0x will be prefixed to the result (0X in
the X case). Precision specifies the minimum number of digits to
appear; if the value can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
printing a zero with precision zero is no characters (this is independent
of padding specified by field width).

f The double argument is printed out in decimal notation of the form [-
]ddd.ddd, where precision specifies the number of digits to follow the
decimal point. The default precision 6. When precision is 0 and the #
flag is not specified, no decimal point character will be printed. A
decimal digit will always follow at least one digit. The value printed is
rounded to the appropriate number of digits.

e, E The double argument is printed out in the form [-] d.ddde±dd, where
precision specifies the number of digits to follow the decimal point. The
default precision 6. When precision is 0 and the # flag is not specified,
no decimal point character will be printed. A decimal digit will always
follow at least one digit. The exponent always contains at least two
digits.

g, G The double argument is printed in the f, e, or E form. The f form is used
unless the exponent to be printed is less than -4 or greater than the
precision. If precision is zero, the printed value consists of no
characters (this is independent of padding specified by field width).
Trailing zeros are removed from the fractional portion of the result; a
decimal point character is printed only if it is followed by a digit.

c The int argument is printed as an unsigned character.

printf printf

MOTOROLA DSP563CCC User’s Manual A-97

s The argument is a pointer to a character string ((char*)). Characters
from the string are printed up to (but not including) a terminating null
character or until precision characters have been printed. If precision is
not explicitly specified or is greater than the length of the string, the
string will be printed until the null character is encountered.

p The argument is a pointer to the void data type ((void*)). The value of
the pointer is printed out as a hexadecimal digit.

n The argument is a pointer to an integer ((int*)) which is the number of
characters printed so far by the current call to printf .

% Print the percent character, %. Note that the complete specifier is %%.

On successful completion, printf returns an integer equal to the number of characters
printed. On failure, printf returns an integer less than 0.

SEE ALSO
scanf — Read values from standard input.

sscanf — Read values from a string.

sprintf — Multiplying a number by a power of 2.

printf printf

A-98 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

char* lib_name = "printf";

void main()

{

int i = 709;

double d = 7.09;

printf("Show several %s examples\n", lib_name);

printf("\tintegers:\n");

printf("\t\toctal == %o\n", i);

printf("\t\toctal == %#.9o ", i);

printf("(force leading 0 and zero pad)\n");

printf("\t\tdecimal == %d\n", i);

printf("\t\tdecimal == % d (force leading blank)\n", i);

printf("\t\thex == %x\n", i);

printf("\t\thex == %#X (force leading 0X)\n", i);

printf("\tfloating point:\n");

printf("\t\tdouble == %f\n", d);

printf("\t\tdouble == %e\n", d);

}

prints to standard output:

Show several printf examples

integers:

octal == 1305

octal == 000001305 (force leading 0 and zero pad)

decimal == 709

decimal == 709 (force leading blank)

hex == 2c5

hex == 0X2C5 (force leading 0X)

floating point:

double == 7.090000

double == 7.090000e+00

putc putc

MOTOROLA DSP563CCC User’s Manual A-99

NAME
putc — Write a single character to a stream.

SYNOPSIS
#include <stdio.h>

int putc (int c, FILE *stream);

DESCRIPTION
The function putc writes the character c to the specified stream. It is identical to the
function fputc , except that putc may be implemented as a macro. This means that
arguments to putc may be evaluated more than once. This is only a problem for function
arguments that have side effects when evaluated.

SEE ALSO
fputc — Write a single character to a stream.

EXAMPLE
#include <stdio.h>

void main ()

{

putc ((int) ‘S’, stdout);

putc ((int) ‘h’, stdout);

putc ((int) ‘a’, stdout);

putc ((int) ‘d’, stdout);

putc ((int) ‘r’, stdout);

putc ((int) ‘a’, stdout);

putc ((int) ‘c’, stdout);

putc ((int) ‘k’, stdout);

putc ((int) ‘\n’, stdout);

}

Will cause the following output to be printed to standard output:

Shadrack

putchar putchar

A-100 DSP563CCC User’s Manual MOTOROLA

NAME
putchar — Write a character to standard output.

SYNOPSIS
#include <stdio.h>

int putchar (int c);

DESCRIPTION
The putchar function prints a character to standard output.

SEE ALSO
gets — Get a line of text from standard input.

EXAMPLE
#include <stdio.h>

char* str = "bald feet\n";

void main()

{

while (*str != ’\0’)

{

putchar (*str++);

}

}

prints to standard output:

bald feet

puts puts

MOTOROLA DSP563CCC User’s Manual A-101

NAME
puts — Write a string to standard output.

SYNOPSIS
#include <stdio.h>

int puts(const char* s);

DESCRIPTION
The puts function prints a string to standard output, appending a newline character. The
puts function returns a zero if operation is successful and a non-zero value on failure.

SEE ALSO
gets — Get a line of text from standard input.

EXAMPLE
#include <stdio.h>

char* str = "bald feet";

void main()

{

puts (str);

}

prints to standard output:

bald feet

qsort qsort

A-102 DSP563CCC User’s Manual MOTOROLA

NAME
qsort — Quick sort.

SYNOPSIS
#include <stdlib.h>

void qsort(void* base, size_t nmemb, size_t size,

int (*compar) (const void*, const void*));

DESCRIPTION
The qsort function sorts an array of nmemb objects of size size , pointed to by base .

The array is sorted in ascending order according to a comparison function pointed to by
compar which is called with two pointers to the array members. The compar function
must return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second argument.

qsort qsort

MOTOROLA DSP563CCC User’s Manual A-103

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char* stuff[] = {

"fred", "flintstone", "driving", "bald", "on", "feet"

};

static int compare(const char** a1, const char** a2)

{

return(strcmp(*a1, *a2));

}

main()

{

int i;

qsort(stuff, (size_t)6, (size_t)sizeof(char*), compare);

for (i = 0 ; i < 6 ; i++)

{

printf("%s\t", stuff[i]);

}

printf("\n");

}

prints to standard output:

bald driving feet flintstone fred on

raise raise

A-104 DSP563CCC User’s Manual MOTOROLA

NAME
raise — Raise a signal.

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
The raise function sends the signal sig to the executing program and returns 0 if
successful or non-zero if unsuccessful. See signal.h for list of available signals and their
default actions.

For more information, see Chapter 6.

SEE ALSO
signal — Set up a signal handler.

EXAMPLE
#include <stdio.h>
#include <signal.h>

void main()

{

int onintr();

signal (SIGINT, onintr);

raise(SIGINT);

}

onintr()

{

printf("caught SIGINT, see ya ...\n");

exit(-9);

}

prints to standard output:

caught SIGINT, see ya ...

rand rand

MOTOROLA DSP563CCC User’s Manual A-105

NAME
rand — Pseudo- random number generator.

SYNOPSIS
#include <stdlib.h>

int rand(void);

DESCRIPTION
The rand function computes and returns a sequence of pseudo-random integers in the
range of 0 to 32767.

SEE ALSO
srand — Seed the pseudo-random number generator.

EXAMPLE
#include <stdio.h>

void main()

{

/* seed the random number sequence */

srand(1638);

/* spew out random numbers in the range 0 to 709 */

for (; ;)

{

printf("%d\n", (rand()) % 709);

}

}

prints to standard output:

569
303
194
224
58
30
...

realloc realloc

A-106 DSP563CCC User’s Manual MOTOROLA

NAME
realloc — Change size of dynamically allocated storage area.

SYNOPSIS
#include <stdlib.h>

int realloc(void* ptr, size_t size);

DESCRIPTION
The realloc function changes the size of the storage area pointed to by ptr to a new size,
size . The contents of the storage area are unchanged. If the new storage area is larger,
the value of the new area is indeterminate. If ptr is null, realloc acts like malloc . If ptr
was not dynamically allocated or the area was previously deallocated by a call to free ,
the behavior is undefined.

If realloc is unable to allocate the new size storage area, NULL is returned and the
original storage area is unchanged.

SEE ALSO
calloc — Dynamically allocate zero-initialized storage.

free — Free dynamically allocated storage.

malloc — Dynamically allocate uninitialized storage.

realloc realloc

MOTOROLA DSP563CCC User’s Manual A-107

EXAMPLE
#include <stdio.h>

void main()

{

char* str;

if ((str = (char*) malloc((size_t) 15)) == NULL)

{

perror("malloc failed");

exit (-8);

}

strcpy(str, "short string");

printf("%s\n", str);

/* allocate space for 40 character string */

if ((str = (char*)realloc(str, 40*sizeof(char)))== NULL)

{

perror("realloc test");

exit (-9);

}

strcat(str, " becomes a long string");

printf("%s\n", str);

}

prints to standard output:

short string

short string becomes a long string

remove remove

A-108 DSP563CCC User’s Manual MOTOROLA

NAME
remove — Remove a file from the disk.

SYNOPSIS
#include <stdio.h>

int remove (char *filename);

DESCRIPTION
The function remove will eliminate the file associated with the specified filename . The
effect of this call on open files may vary from host to host, and is considered undefined.

EXAMPLE
#include <stdio.h>

void main()

{

remove (“foo.exe”);

}

will remove the file “foo.exe” on the disk, if such a file exists.

rename rename

MOTOROLA DSP563CCC User’s Manual A-109

NAME
rename — Rename a file on the disk.

SYNOPSIS
#include <stdio.h>

int rename (const char *old, const char *new);

DESCRIPTION
The function rename disassociates the a disk file from the name old , and associates it
with the name new. The behavior of this call is undefined if there already exists a file
associated with the name new. rename returns zero if it is successful. If it fails, the file
remains associated with the old name, and is not altered in any way.

EXAMPLE
#include <stdio.h>

void main()

{

rename (“old.exe”, “new.exe”);

}

will rename the file “old.exe” to “new.exe”, provided that “old.exe” actually exists on the
disk. Note that “old.exe” will cease to exist.

rewind rewind

A-110 DSP563CCC User’s Manual MOTOROLA

NAME
rewind — Reset the file position indicator to the beginning of the file.

SYNOPSIS
#include <stdio.h>

void rewind (FILE *stream);

DESCRIPTION
The function rewind will reset the file position indicator associated with the specified
stream. Any pending error is also cleared.

SEE ALSO
fgetpos — Obtain the file position indicator value associated with a stream.

fsetpos — Set the file position indicator value associated with a stream.

EXAMPLES
#include <stdio.h>

void main ()

{

FILE *preexisting = fopen (“already.here”, “r”);

putchar (fgetc (preexisting));

rewind (preexisting);

putchar (fgetc (preexisting));

}

will print the first character in the file “already.here” onto standard output twice.

scanf scanf

MOTOROLA DSP563CCC User’s Manual A-111

NAME
scanf — Read formatted input from standard input.

SYNOPSIS
#include <stdio.h>

int scanf (char *format, ...);

DESCRIPTION
The function scanf is equivalent to the fscanf function, except that input is always read
from standard input. Please use the description of argument values in the description of
the fscanf function.

SEE ALSO
fscanf — Read formatted input from a stream.

EXAMPLES
See the manual entry for fscanf for examples. The only difference between scanf and
fscanf is that scanf does not require a FILE* argument; stdin is implied.

setjmp setjmp

A-112 DSP563CCC User’s Manual MOTOROLA

NAME
setjmp — Save a reference of the current calling environment for later use

by longjmp.

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

DESCRIPTION
The setjmp function saves its calling environment in env for later use by longjmp . If the
return is direct from setjmp , the value zero is returned. If the return is from the longjmp
function, the value returned is non-zero.

For more information, see Chapter 6.

SEE ALSO
longjmp — Execute a non-local jump.

setjmp setjmp

MOTOROLA DSP563CCC User’s Manual A-113

EXAMPLE
#include <stdio.h>

#include <setjmp.h>

jmp_buf env;

void func(void)

{

longjmp(env, -709);

}

void main()

{

if (setjmp(env) != 0)

{

printf("-- longjmp has been called --\n");

exit(1);

}

printf("-- setjmp called --\n");

func();

}

prints to standard output:

-- setjmp called --

-- longjmp has been called --

setbuf setbuf

A-114 DSP563CCC User’s Manual MOTOROLA

NAME
setbuf — Alter stream buffering.

SYNOPSIS
#include <stdio.h>

void setbuf (FILE *stream, char *buf);

DESCRIPTION
If buf is NULL , the specified stream will be unbuffered. If buf is non-NULL , then the
stream will be fully buffered with a buffer of size BUFSIZ. Note that setbuf must be used
only before any other operations are performed on the specified stream, and that the
stream argument must be associated with an opened file. Calling setbuf is equivalent to
calling setvbuf using _IOBUF for the mode argument, and BUFSIZ for the size
argument.

SEE ALSO
setvbuf — Read formatted input from a stream.

setvbuf setvbuf

MOTOROLA DSP563CCC User’s Manual A-115

NAME
setvbuf — Alter stream buffering.

SYNOPSIS
#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size_t size);

DESCRIPTION
The function setvbuf is used to alter the way a specified stream is buffered. It must only
be used before any other operation is performed on the specified stream. The argument
mode determines the buffering policy:

_IOFBF — Use the full size of the buffer in the most efficient way.

_IOLBF — Use a line buffering policy: flush on newlines.

_IONBF — Do not buffer the stream at all.

The argument size specified the buffer size for this stream. The pointer buf , if non-
NULL , may be used for stream buffering. If buf is NULL , then setvbuf will allocate any
needed buffer.

SEE ALSO
setbuf — A restricted form of setvbuf .

signal signal

A-116 DSP563CCC User’s Manual MOTOROLA

NAME
signal — Set up signal handler.

SYNOPSIS
#include <setjmp.h>

void (*signal(int sig, void (*func)(int))) (int);

DESCRIPTION
The signal function chooses one of three ways in which to handle the receipt of the

signal sig :
1. If the value of func is the macro SIG_DFL, default handling for the signal
will occur.
2. If the value of func is the macro SIG_IGN, the signal is ignored.
3. Otherwise, func is a pointer to a function that will be called on the receipt of
signal sig .

When a signal occurs, the signal handler for sig is reset to SIG_DFL; this is equivalent to
making the call signal (sig , SIG_DFL). The function func terminates by executing the
return statement or by calling the abort , exit , or longjmp function. If the function func
terminates with a return statement, execution continues at the point the signal was
caught. Note that if the value of sig was SIGFPE, the behavior is undefined.

Also note that in order to continue catching signal sig , the signal handler must reissue
the signal call.

For more information, see Chapter 6.

SEE ALSO
raise — Raise a signal.

signal signal

MOTOROLA DSP563CCC User’s Manual A-117

EXAMPLE
#include <stdio.h>
#include <signal.h>

void main()

{

int onintr();

signal (SIGINT, onintr);

raise(SIGINT);

}

onintr()

{

printf("caught SIGINT, see ya ...\n");

exit(-9);

}

prints to standard output:

caught SIGINT, see ya ...

sin sin

A-118 DSP563CCC User’s Manual MOTOROLA

NAME
sin — Sine.

SYNOPSIS
#include <math.h>

double sin(double x);

DESCRIPTION
The sin function computes and returns the sine of x, measured in radians.

SEE ALSO
asin — The arc sine of an angle.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("sin(45.0) == %f\n", sin(45.0));

}

prints to standard output:

sin(45.0) == 0.850903

sinh sinh

MOTOROLA DSP563CCC User’s Manual A-119

NAME
sinh — Hyperbolic Sine.

SYNOPSIS
#include <math.h>

double sinh(double x);

DESCRIPTION
The sinh function computes and returns the hyperbolic sine of x, measured in radians.
When the value of x is too large, errno will be set to ERANGE and the return value will
be HUGE_VAL with the sign of x.

SEE ALSO
cosh — Hyperbolic cosine of an angle.

tanh — Hyperbolic tangent of an angle.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("sinh(3.1415) == %f\n", sinh(3.1415));

}

prints to standard output:

sinh (3.1415) == 11.547600

sprintf sprintf

A-120 DSP563CCC User’s Manual MOTOROLA

NAME
sprintf — Print to a string.

SYNOPSIS
#include <stdio.h>

int sprintf (char *s, const char *format, …);

DESCRIPTION
The sprintf function is equivalent to printf except that s specifies a string that the
generated output is printed to rather than standard output. A null character is written at
the end of the string. The sprintf function returns the number of characters written to the
string.

SEE ALSO
printf — Print to a standard output.

sprintf sprintf

MOTOROLA DSP563CCC User’s Manual A-121

EXAMPLE
#include <stdio.h>

void main()

{

char buffer[256];

char* bptr = buffer;

char* str = "strings";

int i = 709, count;

double d = 7.09;

bptr += sprintf(bptr,"testing sprintf with:\n");

sprintf(bptr, "\tstrings\t(%s)\n%n", str, &count);

bptr += count;

bptr += sprintf(bptr, "\thex digits\t%x\n", i);

bptr += sprintf(bptr, "\tfloating point\t%f\n", d);

puts(buffer);

}

prints to standard output:

testing sprintf with:

strings (strings)

hex digits 2c5

floating point 7.090000

sqrt sqrt

A-122 DSP563CCC User’s Manual MOTOROLA

NAME
sqrt — Square root.

SYNOPSIS
#include <math.h>

double sqrt(double x);

DESCRIPTION
The sqrt function computes and returns the nonnegative square root of x. If x is less
than zero, errno is set to EDOM and 0.0 is returned.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

double d = 50.2681;

printf("sqrt(50.2681) == %.2f\n", sqrt(d));

}

prints to standard output:

sqrt(50.2681) == 7.09

srand srand

MOTOROLA DSP563CCC User’s Manual A-123

NAME
srand — Seed the pseudo-random number generator.

SYNOPSIS
#include <stdlib.h>

void srand (unsigned int seed);

DESCRIPTION
The srand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by rand . When srand is called with the same argument, the
sequence of pseudo-random numbers will be repeated. If srand is not called, the default
seed is 1.

SEE ALSO
rand — Generate a pseudo-random number sequence.

EXAMPLE
#include <stdio.h>

void main()

{

/* seed the random number sequence */

srand(1638);

/* spew out random numbers in the range 0 to 709 */

for (; ;)

{

printf("%d\n", (rand()) % 709);

}

}

prints to standard output:

569
303
194
224
58
30
...

sscanf sscanf

A-124 DSP563CCC User’s Manual MOTOROLA

NAME
sscanf — Read formatted input from a string.

SYNOPSIS
#include <stdio.h>

int sscanf (const char *s, const char *format, ...);

DESCRIPTION
The function sscanf reads formatted input from the string argument s, according to the
format string format . The operation of sscanf is identical to fscanf except that input is
read from a string.

SEE ALSO
fscanf — Read formatted input from a string.

strcat strcat

MOTOROLA DSP563CCC User’s Manual A-125

NAME
strcat — Concatenate two strings.

SYNOPSIS
#include <string.h>

char* strcat(char* s1, const char* s2);

DESCRIPTION
The strcat function appends a copy of the string pointed to by s2 (including the
terminating null character) to the end of the string pointed to by s1. The first character of
the second string is written over the first strings terminating character. The strcat
function returns the pointer s1.

SEE ALSO
strncat — Concatenate n characters from one string to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char bigstr[80] = "string 1";

char smallstr[20] = " string 2";

printf("concatenate (%s) and (%s)\n", bigstr, smallstr);

(void) strcat(bigstr, smallstr);

puts(bigstr);

}

prints to standard output:

concatenate (string 1) and (string 2)

string 1 string 2

strchr strchr

A-126 DSP563CCC User’s Manual MOTOROLA

NAME
strchr — Find first occurrence of a character in a string.

SYNOPSIS
#include <string.h>

char* strchr(const char* s, int c);

DESCRIPTION
The strchr function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered part of the string. The strchr
function returns a pointer to the located character or a null pointer if the character is not
found in the string.

SEE ALSO
memchr — Find a character in a memory area.

strcspn — Compute the length of the prefix of a string not containing any
characters contained in another string.

strpbrk — Find the first occurrence of a character from one string in another
string.

strrchr — Find the last occurrence of a character in a string.

strspn — Compute the length of the prefix of a string contained in another
string.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* string = "fred flintstone driving on bald feet";

char* found;

found = strchr(string, ’b’);

puts(found);

}

prints to standard output:

bald feet

strcmp strcmp

MOTOROLA DSP563CCC User’s Manual A-127

NAME
strcmp — Compare two strings.

SYNOPSIS
#include <string.h>

int strcmp(const char* s1, const char* s2);

DESCRIPTION
The strcmp function compares the string pointed to by s1 to the string pointed to by s2.
If string s1 is lexicographically greater than, equal to, or less than s2; an integer
respectively greater than, equal to, or less than zero will be returned. The comparison of
two strings of unequal length in which the longer string contains the smaller string yields
the results that the longer string compares greater than.

i.e. strcmp("xxx", "xxxyz") < 0 or strcmp("xxxyz", "xxx") > 0

When the header file string.h is included, the default case will be in-line [see section A.3,
Forcing Library Routines Out-of-line].

SEE ALSO
memcmp — Compare two memory areas.

strcoll — Compare two strings based on current locale.

strncmp — Compare portions of two strings.

strcmp strcmp

A-128 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

if (strcmp("xxx", "xxxyz") < 0)

{

puts("xxx is less than xxxyz");

}

else

{

puts("xxx is greater than xxxyz");

}

if (strcmp("xxxyz", "xxx") < 0)

{

puts("xxxyz is less than xxx");

}

else

{

puts("xxxyz is greater than xxx");

}

if (strcmp("xxxyz", "xxxyz") == 0)

{

puts("xxxyz is equal to xxxyz");

}

}

prints to standard output:

xxx is less than xxxyz

xxxyz is greater than xxx

xxxyz is equal to xxxyz

strcoll strcoll

MOTOROLA DSP563CCC User’s Manual A-129

NAME
strcoll — Compare two strings based on current locale.

SYNOPSIS
#include <string.h>

int strcoll(const char* s1, const char* s2);

DESCRIPTION
The strcoll function compares the string pointed to by s1 to the string pointed to by s2,
both strings are interpreted using the LC_COLLATE category of the current locale. If
string s1 is lexicographically greater than, equal to, or less than s2, an integer greater
than, equal to, or less than zero will be returned. The comparison of two strings of
unequal length in which the longer string contains the smaller string yields the result that
the longer string compares greater than.

For DSP563CCC, strcoll functions exactly like strcmp .

SEE ALSO
strxfrm — Transform a string into locale-independent form.

strcmp — Compare two strings.

strcpy strcpy

A-130 DSP563CCC User’s Manual MOTOROLA

NAME
strcpy — Copy one string into another.

SYNOPSIS
#include <string.h>

int strcpy(char* s1, const char* s2);

DESCRIPTION
The strcpy function copies the characters of string s2, including the terminating
character, into the string pointed to by s1. If the strings overlap, the behavior is
undefined. The value of s1 is returned.

When the header file string.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

SEE ALSO
memcpy — Copy one memory area to another.

memset — Initialize a memory area.

strncpy — Copy a portion of one string to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char string[80];

strcpy(string, "-- no bald feet for george jetson --");

puts(string);

}

prints to standard output:

-- no bald feet for george jetson --

strcspn strcspn

MOTOROLA DSP563CCC User’s Manual A-131

NAME
strcspn — Compute the length of the prefix of one string consisting entirely

of characters not in another.

SYNOPSIS
#include <string.h>

int strcspn(const char* s1, const char* s2);

DESCRIPTION
The strcspn function computes and returns the length of the prefix of the string pointed
to by s1 that consists entirely of characters not found in the string pointed to by s2.

SEE ALSO
memchr — Find first occurrence of a character in a memory area.

strchr — Find first occurrence of a character in a string.

strpbrk — Find first occurrence of any character from one string in another
string.

strrchr — Find last occurrence of a character in a string.

strspn — Compute the length of the prefix of one string that consists only
of characters from another string.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

int i;

i = strcspn("azbyfghjki", "fkjeughtrg");

printf("-- prefix length == %d --\n", i);

}

prints to standard output:

-- prefix length == 4 --

strerror strerror

A-132 DSP563CCC User’s Manual MOTOROLA

NAME
strerror — Map error code into an error message string.

SYNOPSIS
#include <string.h>

char* strerror(int errnum);

DESCRIPTION
The strerror function maps errnum to an error message string. A pointer to the string is
returned. The string returned should not be modified by the programmer.

SEE ALSO
perror — Print error message.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()
{

int i;

for (i = 1; i < 5; ++ i)

{
printf (“message %d:%s\n”, i, strerror(i));

}
}

prints to standard output:

message 1: domain error

message 2: range error

message 3: out of heap memory

message 4: bad format for conversion string

strlen strlen

MOTOROLA DSP563CCC User’s Manual A-133

NAME
strlen — Determine length of a string.

SYNOPSIS
#include <string.h>

size_t strlen(const char* s);

DESCRIPTION
The strlen function computes and returns the number of characters preceeding the
terminating character.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* s = "is your name michael diamond?";

printf("strlen(\"%s\") == %d\n", s, strlen(s));

}

prints to standard output:

strlen("is your name michael diamond?") == 29

strncat strncat

A-134 DSP563CCC User’s Manual MOTOROLA

NAME
strncat — Concatenate a portion of one string to another.

SYNOPSIS
#include <string.h>

char* strncat(char* s1, const char* s2, size_t n);

DESCRIPTION
The strncat function appends, at most, n characters from the string pointed by s2 to the
end of the string pointed to by s1. The first character of the second string is written over
the first strings terminating character and a new terminating character is appended. The
strncat function returns a pointer to s1. If s1 does not have n words allocated past the
terminating character, the behavior is undefined.

SEE ALSO
strcat — C oncatenate one string to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char bstr[80] = "string 1";

char sstr[20] = " string 2";

printf("paste 5 chars of (%s) on to (%s)\n", sstr, bstr);

(void) strncat(bstr, sstr, 5);

puts(bstr);

}

prints to standard output:

paste 5 chars of (string 2) on to (string 1)

string 1 stri

strncmp strncmp

MOTOROLA DSP563CCC User’s Manual A-135

NAME
strncmp — Compare a portion of two strings.

SYNOPSIS
#include <string.h>

int strncmp(const char* s1, const char* s2, size_t n);

DESCRIPTION
The strncmp function compares n characters of the string pointed to by s2 with the
string pointed to by s1. If string s1 is lexicographically greater than, equal to, or less than
s2; an integer respectively greater than, equal to, or less than zero will be returned. This
is similar to strcmp .

SEE ALSO
strcmp — C ompare two strings.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char bigstr[80] = "string 1";

char smallstr[20] = "string 2";

if (strncmp(bigstr, smallstr, 5) == 0)

{

printf("-- strncmp ok --\n");

}

else

{

printf("?? strncmp error ??\n");

}

}

prints to standard output:

-- strncmp ok --

strncpy strncpy

A-136 DSP563CCC User’s Manual MOTOROLA

NAME
strncpy — Copy a portion of one string into another.

SYNOPSIS
#include <string.h>

char* strncpy(char* s1, const char* s2, size_t n);

DESCRIPTION
The strncpy function copies exactly n characters from a string pointed to by s2 into a
string pointed to by s1. If strlen (s2) is less than n, the string s1 is null padded. If strlen
(s2) is greater than or equal to n, no null termination character is copied to s1. The s1
pointer is returned.

Note that the behavior of non null terminated strings is undefined.

SEE ALSO
memcpy — Copy one memory area to another.

strcpy — C opy one string to another.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char bigstr[80] = "string 1";

char smallstr[20] = "spanky 2";

(void) strncpy(bigstr, smallstr, 6);

puts(bigstr);

}

prints to standard output:

spanky 1

strpbrk strpbrk

MOTOROLA DSP563CCC User’s Manual A-137

NAME
strpbrk — Find the first occurrence of a character from one string in

another.

SYNOPSIS
#include <string.h>

char* strpbrk(char* s1, const char* s2);

DESCRIPTION
The strpbrk function finds the first occurrence of any character in the string pointed to by
s2 in the string pointed to by s1. If a character is found, a pointer to the character is
returned. If a character is not found, a null pointer is returned.

SEE ALSO
memchr — Find a character in a memory area.

strchr — Find the first occurrence of a character in a string.

strcspn — Compute the length of the prefix of a string not containing any
characters contained in another string.

strrchr — Find the last occurrence of a character in a string.

strspn — Compute the length of the prefix of a string contained in another
string.

strpbrk strpbrk

A-138 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* string = "abcde random characters fghijkl";

char* fndstr = "klmnopqr";

char* found;

if ((found = strpbrk(string, fndstr)) != NULL)

{

puts(found);

}

else

{

puts("can’t find a character");

}

}

prints to standard output:

random characters fghijkl

strrchr strrchr

MOTOROLA DSP563CCC User’s Manual A-139

NAME
strrchr — Find the last occurrence of a character from one string in

another.

SYNOPSIS
#include <string.h>

char* strpbrk(char* s1, const char* s2);

DESCRIPTION
The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered part of the string. strrchr
returns a pointer to the located character, or NULL , if the character is not found in the
string.

SEE ALSO
memchr — Find a character in a memory area.

strchr — Find the first occurrence of a character in a string.

strcspn — Compute the length of the prefix of a string not containing any
characters contained in another string.

strpbrk — Find the first occurrence of a character from one string in another
string.

strspn — Compute the length of the prefix of a string contained in another
string.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* string = "fred flintstone driving on bald feet";

char* found;

found = strrchr(string, ’f’);

puts(found);

}

prints to standard output:

feet

strspn strspn

A-140 DSP563CCC User’s Manual MOTOROLA

NAME
strspn — Find the maximal initial substring that is composed from a

specified set of characters.

SYNOPSIS
#include <string.h>

size_t strstr (const char* s1, const char* s2);

DESCRIPTION
The strspn function computes a maximal initial substring from s1. This substring will
only contain characters from the set of characters contained in the string s2. The return
value of strspn is the length of the computed substring.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main ()

{

char* string = "bow wow, yippie yay yippie yay";

char* ok_set = "wob ";

printf (“%*s\n”, (int) strspn (string, ok_set), string);

}

prints to standard output:

bow wow

strstr strstr

MOTOROLA DSP563CCC User’s Manual A-141

NAME
strstr — Find the first occurrence of one string in another.

SYNOPSIS
#include <string.h>

char* strstr(const char* s1, const char* s2);

DESCRIPTION
The strstr function locates the first occurrence of the string pointed to by s2 (excluding
the termination character) in the string pointed to by s1. If the string s2 is found, a pointer
to it is returned. If the string s2 is not found, NULL returned. If s2 has a length of zero, a
pointer to s1 is returned.

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* string = "abcdef random characters ghijkl";

char* fndstr = "random";

char* found;

if ((found = strstr(string, fndstr)) != NULL)

{

puts(found);

}

else

{

puts("can’t find the string");

}

}

prints to standard output:

random characters ghijkl

strtod strtod

A-142 DSP563CCC User’s Manual MOTOROLA

NAME
strtod — String to double.

SYNOPSIS
#include <stdlib.h>

double strtod(const char* nptr, char** endptr);

DESCRIPTION
The strtod function converts and returns the string pointed to by nptr to floating point
number. First strtod decomposes nptr into three sections;

1. an initial, possibly empty, sequence of white space characters,
2. a subject in the form of a floating point constant; and
3. a final string of one or more unrecognized characters, including the

terminating null character of the input string.

If the first unrecognized character is not null, a pointer to that character is stored into the
object that endptr points to. If the string is empty or the subject contains no floating point
constant description, zero is returned.

SEE ALSO
atof — String to double.

atoi — String to integer.

atol — String to long integer.

strtol — String to long integer.

strtoul — String to unsigned long integer.

strtod strtod

MOTOROLA DSP563CCC User’s Manual A-143

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

char* string = "7.09strtod stopped";

char* stopped;

double result;

result = strtod(string, &stopped);

printf("string == (%s)\n", string);

printf("result == %f\n", result);

printf("stop string == (%s)\n", stopped);

}

prints to standard output:

string == (7.09strtod stopped)

result == 7.089990

stop string == (strtod stopped)

strtok strtok

A-144 DSP563CCC User’s Manual MOTOROLA

NAME
strtok — Break string into tokens.

SYNOPSIS
#include <stdlib.h>

char* strtok(char* s1, const char* s2);

DESCRIPTION
The strtok function breaks the string pointed to by s1 into tokens and each token is
delimited by characters from the string pointed to by s2. The first call in the sequence
has s1 as its first argument and is followed by calls with a null pointer as the first
argument. The separator string, s2, may be different from call to call. If a token is not
found, a null pointer is returned. If a token is found, a null terminated token is returned.

strtok strtok

MOTOROLA DSP563CCC User’s Manual A-145

EXAMPLE
#include <stdio.h>

#include <string.h>

void main()

{

char* str1 = "$%^this#is string\tnumber!one.";

char str2[] = "?a???b,,,#c";

char* token;

while ((token = strtok(str1, "$%^#\t! ")) != NULL)

{

printf("%s ", token);

str1 = NULL;

}

printf("\n");

token = strtok(str2, "?"); printf("%s ", token);

token = strtok(NULL, ","); printf("%s ", token);

token = strtok(NULL, "#,"); printf("%s\n", token);

if ((token = strtok(NULL, "?")) != NULL)

{

printf("error: strtok busted\n");

}

}

prints to standard output:

this is string number one.

a ??b c

strtol strtol

A-146 DSP563CCC User’s Manual MOTOROLA

NAME
strtol — String to long integer.

SYNOPSIS
#include <stdlib.h>

long int strtol(const char* nptr, char** endptr, int base);

DESCRIPTION
The strtol function converts and returns the string pointed to by nptr to a long integer.
First strtol decomposes nptr into three sections;

1. an initial, possibly empty, sequence of white space characters,
2. a subject in the form of an integer constant; and
3. a final string of one or more unrecognized characters, including the
terminating null character of the input string.

If the first unrecognized character is not null, a pointer to that character is stored in to the
object that endptr points to. If the string is empty or the subject contains no floating-point
constant description, zero is returned.

If base is between 2 and 36, the expected form of the long integer subject is a sequence
of letters and digits with the radix specified by base. The letters a (or A) through z (or Z)
are ascribed values 10 to 35; only letters whose value is less than base are valid. If base
is 16, 0x or 0X may optionally preceed the long integer subject. If base is zero, the long
integer subject determines its own base.

Leading 0x, or 0X base == 16

Leading 0 base == 8

otherwise base == 10

If the value of the return value is too large to be expressed by a long int, errno is set to
ERANGE and LONG_MAX is returned.

SEE ALSO
atof — String to double.

atoi — String to integer.

atol — String to long integer.

strtod — String to double.

strtoul — String to unsigned long integer.

strtol strtol

MOTOROLA DSP563CCC User’s Manual A-147

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

char* hexstr = "0x3cdef709hexstr stopped";

char* decstr = "709709709decstr stopped";

char* octstr = "012341234octstr stopped";

char* stopped;

long result;

printf("result\t\tstop string\n");

result = strtol(hexstr, &stopped, 16);

printf("%lx\t\t%s\n", result, stopped);

result = strtol(decstr, &stopped, 10);

printf("%ld\t\t%s\n", result, stopped);

result = strtol(octstr, &stopped, 8);

printf("%lo\t\t%s\n", result, stopped);

}

prints to standard output:

result stop string

3cdef709 hexstr stopped

709709709 decstr stopped

12341234 octstr stopped

strtoul strtoul

A-148 DSP563CCC User’s Manual MOTOROLA

NAME
strtoul — String to unsigned long integer.

SYNOPSIS
#include <stdlib.h>

unsigned long int strtoul(const char* nptr, char** endptr, int base);

DESCRIPTION
The strtoul function converts and returns the string pointed to by nptr to a long integer.
First strtoul decomposes nptr into three sections; an initial, possibly empty, sequence of
white space characters, a subject in the form of an integer constant; and a final string of
one or more unrecognized characters, including the terminating null character of the
input string.

If the first unrecognized character is not null, a pointer to that character is stored in to the
object that endptr points to. If the string is empty or the subject contains no floating point
constant description, zero is returned.

If base is between 2 and 36, the expected form of the long integer subject is a sequence
of letters and digits with the radix specified by base. The letters a (or A) through z (or Z)
are ascribed values 10 to 35; only letters whose value is less than base are valid. If base
is 16, 0x or 0X may optionally preceed the long integer subject. If base is zero, the long
integer subject determines its own base.

Leading 0x, or 0X base == 16

Leading 0 base == 8

otherwise base == 10

If the value of the return value is too large to be expressed by a long int, errno is set to
ERANGE, and ULONG_MAX is returned.

SEE ALSO
atof — String to double.

atoi — String to integer.

atol — String to long integer.

strtod — String to double.

strtol — String to long integer.

strtoul strtoul

MOTOROLA DSP563CCC User’s Manual A-149

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

void main()

{

char* hexstr = "0xbcdef709hexstr stopped";

char* decstr = "709709709decstr stopped";

char* octstr = "012341234octstr stopped";

char* stopped;

unsigned long result;

printf("result\t\tstop string\n");

result = strtoul(hexstr, &stopped, 16);

printf("%lu\t\t%s\n", result, stopped);

result = strtoul(decstr, &stopped, 10);

printf("%lu\t\t%s\n", result, stopped);

result = strtoul(octstr, &stopped, 8);

printf("%lu\t\t%s\n", result, stopped);

}

prints to standard output:

result stop string

3168728841 hexstr stopped

709709709 decstr stopped

2736796 octstr stopped

strxfrm strxfrm

A-150 DSP563CCC User’s Manual MOTOROLA

NAME
strxfrm — Transform a string into locale-independent form.

SYNOPSIS
#include <string.h>

size_t strxfrm(char* s1, const char* s2, size_t n);

DESCRIPTION
The strxfrm function transforms the string pointed to by s2 and places the resulting
string in the array pointed to by s1. The transformation is such that if the strcmp function
is applied to the two transformed strings, it returns a value greater than, equal to, or less
than zero, corresponding to the result of the strcoll function applied to the same two
original strings. No more than n characters are placed into s1, including the terminating
null character. If s1 and s2 overlap, the behavior is undefined.

The strxfrm function returns the length of the transformed string excluding the
terminating null character. If the value returned is n or more, the contents of s1 are
indeterminate.

SEE ALSO
strcoll — Compare two strings based on current locale.

strcmp — Compare two strings.

SPECIAL NOTE
DSP563CCC only supports the standard locale, so no transformation is done.

tan tan

MOTOROLA DSP563CCC User’s Manual A-151

NAME
tan — Tangent.

SYNOPSIS
#include <math.h>

double tan(double x);

DESCRIPTION
The tan function computes and returns the tangent of x, where x is in radians.

SEE ALSO
atan — Compute the arc tangent.

atan2 — Compute the arc tangent of a point.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("tan(45) == %f\n", tan(45));

}

prints to standard output:

tan(45) == 1.619770

tanh tanh

A-152 DSP563CCC User’s Manual MOTOROLA

NAME
tanh — Hyperbolic tangent.

SYNOPSIS
#include <math.h>

double tanh(double x);

DESCRIPTION
The tanh function computes and returns the hyperbolic tanget of x,

tanh(x) == sinh (x) / cosh (x)

If the value of x is too large, errno is set to ERANGE and the value HUGE_VAL is
returned with the sign of x.

SEE ALSO
cosh — Compute the hyperbolic cosine.

sinh — Compute the hyperbolic sine.

EXAMPLE
#include <stdio.h>

#include <math.h>

void main()

{

printf("tanh(45) == %f\n", tanh(45));

}

prints to standard output:

tanh(45) == 1.000000

tmpfile tmpfile

MOTOROLA DSP563CCC User’s Manual A-153

NAME
tmpfile — Create a temporary binary file.

SYNOPSIS
#include <stdio.h>

FILE *tmpfile (void);

DESCRIPTION
The function tmpfile will create a temporary file on the disk. The file will be automatically
removed when the program terminates. The file will be opened with the mode “wb+ ”. If
tmpfile fails, it returns a NULL pointer.

SEE ALSO
tmpnam — Generate a valid temporary file name.

tmpnam tmpnam

A-154 DSP563CCC User’s Manual MOTOROLA

NAME
tmpnam — Create a temporary file name.

SYNOPSIS
#include <stdio.h>

char *tmpnam (char *s);

DESCRIPTION
The function tmpnam will create a string that could be used as a unique temporary file
name. This function may be called as many as TMP_MAX times. Each time it will return
a different string. If the argument s is NULL , then tmpnam will return an internal static
buffer that may be clobbered by subsequent calls. If s is non-NULL , then it must point to
a writable buffer of at least L_tmpnam characters.

SEE ALSO
tmpfile — Create a temporary binary file.

EXAMPLE
#include <stdio.h>

void main ()

{

char buffer[L_tmpnam];

(void) fopen (tmpnam (buffer), “w+”);

}

will create a temporary text file on the disk. Note that unlike when tmpfile is called, one
must remove any files created using fopen and tmpnam .

tolower tolower

MOTOROLA DSP563CCC User’s Manual A-155

NAME
tolower — Convert uppercase character to lowercase.

SYNOPSIS
#include <ctype.h>

int tolower(int c);

DESCRIPTION
The tolower function converts uppercase to lowercase. If c is an uppercase letter, return
the corresponding lowercase letter; otherwise return c.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

printf("tolower(’A’) == %c\n", tolower(’A’));

printf("tolower(’z’) == %c\n", tolower(’z’));

printf("tolower(’#’) == %c\n", tolower(’#’));

}

prints to standard output:

tolower(’A’) == a

tolower(’z’) == z

tolower(’#’) == #

toupper toupper

A-156 DSP563CCC User’s Manual MOTOROLA

NAME
toupper — Convert lowercase character to uppercase.

SYNOPSIS
#include <ctype.h>

int toupper(int c);

DESCRIPTION
The toupper function converts lowercase to uppercase. If c is a lowercase letter, return
the corresponding uppercase letter; otherwise return c.

When the header file ctype.h is included, the default case will be in-line [see section
A.3, Forcing Library Routines Out-of-line].

EXAMPLE
#include <stdio.h>

#include <ctype.h>

void main()

{

printf("toupper(’A’) == %c\n", toupper(’A’));

printf("toupper(’z’) == %c\n", toupper(’z’));

printf("toupper(’#’) == %c\n", toupper(’#’));

}

prints to standard output:

toupper(’A’) == A

toupper(’z’) == Z

toupper(’#’) == #

ungetc ungetc

MOTOROLA DSP563CCC User’s Manual A-157

NAME
ungetc — Push a character back onto an input stream.

SYNOPSIS
#include <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION
The function ungetc converts the argument c to an unsigned char , and pushes it back
onto the specified input stream. Pushed characters will be read back in reverse order by
any functions reading from said stream. If a call is made to a file positioning function,
such as fseek , all pushed characters will be lost. Only one call to ungetc before a read
from the stream is allowed. EOF cannot be pushed. ungetc returns EOF upon failure,
while the converted value is returned upon success.

SEE ALSO
tmpfile — Create a temporary file.

EXAMPLE
#include <stdio.h>

void main ()

{

char peek = getchar ();

putchar (peek);

ungetc (peek, stdin);

putchar (getchar ());

}

will print the first character from standard input twice on standard output.

vfprintf vfprintf

A-158 DSP563CCC User’s Manual MOTOROLA

NAME
vfprintf — Write formatted output to a stream using a va_list.

SYNOPSIS
#include <stdio.h>

int vfprintf (FILE *stream, const char *format, va_list arg);

DESCRIPTION
The function vfprintf is exactly the same as the function fprintf except that an existing
va_list is used in place of a series of arguments. The macro va_start must have been
invoked on the argument arg before the call to vfprintf is made. vfprintf returns the
number of characters printed. On error, vfprintf returns a negative value.

SEE ALSO
fprintf — Write formatted output to a stream.

EXAMPLE
#include <stdio.h>

int printf (const char *format, ...)

{

va_list ap;

int result;

va_start (ap, format);

result = vfprintf (stdout, format, ap);

va_end (ap);

return result;

}

is essentially the library function printf .

vprintf vprintf

MOTOROLA DSP563CCC User’s Manual A-159

NAME
vprintf — Write formatted output to standard output using a va_list.

SYNOPSIS
#include <stdio.h>

int vprintf (const char *format, va_list arg);

DESCRIPTION
The function vprintf is exactly the same as the function printf except that an existing
va_list is used in place of a series of arguments. The macro va_start must have been
invoked on the argument arg before the call to vprintf is made. vprintf returns the
number of characters printed. On error, vprintf returns a negative value.

SEE ALSO
printf — Write formatted output to standard output.

EXAMPLE
#include <stdio.h>

int printf (const char *format, ...)

{

va_list ap;

int result;

va_start (ap, format);

result = vprintf (format, ap);

va_end (ap);

return result;

}

is essentially the library function printf .

vsprintf vsprintf

A-160 DSP563CCC User’s Manual MOTOROLA

NAME
vsprintf — Write formatted output to a string using a va_list.

SYNOPSIS
#include <stdio.h>

int vsprintf (char *s, const char *format, va_list arg);

DESCRIPTION
The function vsprintf is exactly the same as the function printf except that an existing
va_list is used in place of a series of arguments. The macro va_start must have been
invoked on the argument arg before the call to vsprintf is made. vsprintf returns the
number of characters printed. On error, vsprintf returns a negative value.

SEE ALSO
sprintf — Write formatted output to a string.

EXAMPLE
#include <stdio.h>

int sprintf (char *s, const char *format, ...)

{

va_list ap;

int result;

va_start (ap, format);

result = vsprintf (s, format, ap);

va_end (ap);

return result;

}

is essentially the library function sprintf .

wcstombs wcstombs

MOTOROLA DSP563CCC User’s Manual A-161

NAME
wcstombs — Convert wchar_t array to multibyte string.

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(char* s, const wchar_t* pwcs, size_t n);

DESCRIPTION
The wcstombs function converts a wide character string pointed to by pwcs into the
character string pointed to by s. Each character of the wide character string is converted
into the corresponding multibyte character as if by the wctomb function. Conversion will
stop when n total characters have been converted or a null character is encountered. If s
and pwcs overlap, the behavior is undefined.

If an invalid character is encountered, wcstombs returns (size_t) -1. Otherwise,
wcstombs returns the number of characters converted not including the terminating
NULL character, if any.

SEE ALSO
mbtowcs — Convert a multibyte string to a wchar_t array.

SPECIAL NOTE
The DSP56300 does not provide byte addressing, thus characters always require an
entire word of memory each. One way to better utilize data memory (with a run-time cost)
is to use the ANSI data type wchar_t and the special ANSI multibyte and wide
character library routines.

wcstombs wcstombs

A-162 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

char array[16];

wchar_t wstr[] = L"abcdefgh";

void main()

{

char* ptr = (char*) wstr;

int convert;

convert = wcstombs(array, wstr, 10);

printf("packed array:\n");

while (*ptr != 0)

{

printf("%0.4x ", *ptr++);

}

printf("\n\n");

printf("%d chars extracted, unpacked array:\n", convert);

ptr = array;

while (*ptr != 0)

{

printf("%0.4x ", *ptr++);

}

printf("\n");

}

prints to standard output:

packed array:

6162 6364 6566 6768

8 chars extracted, unpacked array:

0061 0062 0063 0064 0065 0066 0067 0068

wctomb wctomb

MOTOROLA DSP563CCC User’s Manual A-163

NAME
wctomb — Convert wchar_t character to multibyte character.

SYNOPSIS
#include <stdlib.h>

int wctomb(char* s, wchar_t wchar);

DESCRIPTION
The wctomb function examines and converts the wide character wchar into a string of
characters pointed to by s. At most, MB_CUR_MAX characters will be stored in s.

If s is NULL , wctomb returns zero. If s is not NULL , wctomb returns the number of
characters that comprise the converted multibyte character unless an invalid multibyte
character is detected in which case -1 will be returned.

SEE ALSO
mblen — Determine the length of a multibyte character.

mbstowcs — Convert a multibyte string into a wide character string.

mbtowc — Convert a multibyte character into a wide character.

SPECIAL NOTE
The DSP56100 does not provide byte addressing, thus characters always require an
entire word of memory each. One way to better utilize data memory (with a run-time cost)
is to use the ANSI data type wchar_t and the special ANSI multibyte and wide
character library routines.

wctomb wctomb

A-164 DSP563CCC User’s Manual MOTOROLA

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

char mbarray[8];

void main()

{

wchar_t wide = L’ab’;

char* ptr = mbarray;

int convert;

convert = wctomb(mbarray, wide);

printf("packed char looks like:\n");

printf("%0.4x\n\n", wide);

printf("%d extracted chars looks like:\n", convert);

while (*ptr != 0)

{

printf("%0.4x ", *ptr++);

}

printf("\n");

}

prints to standard output:

packed char looks like:

6162

2 extracted chars looks like:

0061 0062

MOTOROLA DSP563CCC User’s Manual B-1

Appendix B
Utilities

There are several utility programs available with the
DSP563CCC compiler. They are:

1. asm56300

2. cldinfo

3. cldlod

4. cofdmp

5. dsplib

6. dsplnk

7. run563

8. srec

These programs are described in detail in the following pages.

B-2 DSP563CCC User’s Manual MOTOROLA

NAME
asm56300 — Motorola DSP56300 Family Assembler

SYNOPSIS
asm56300 [-A] [-B [<objfil>]] [-D <symbol> <string>] [-F <argfil>][-G] [-I

<ipath>] [-L [<lstfil>]] [-M <mpath>] [-O <opt> [, <opt> ...]][-R <rev> [, <rev>...]]
[-V] <files...>

DESCRIPTION
asm56300 is a program that processes source program statements written
in DSP56300 assembly language, translating these source statements into
object programs compatible with other DSP56300 software and hardware
products.

files is a list of operating system compatible file names including optional
pathnames. If no extension is supplied for a given file, the assembler will
first attempt to open the file using the file name as supplied. If that is not
successful, the assembler appends .asm to the file name and tries to open
the file again. If no path is given for a particular file, the assembler will look
for that file in the current directory. The list of files will be processed se-
quentially in the order given and all files will be used to generate the output
listing and object file.

The assembler will redirect the output listing to the standard output if it is
not redirected via the -L command line option described below. Error mes-
sages will always appear on the standard output regardless of any option
settings. Note that some options (-B and -L) allow a hyphen as an optional
argument which indicates that the corresponding output should be sent to
the standard output stream. Unpredictable results may occur if, for exam-
ple, the object file is explicitly routed to standard output while the listing file
is allowed to default to the same output stream.

OPTIONS
Any of the following command line options may be specified. These can be
in any order but must precede the list of source file names. Option letters
may be entered in either upper or lower case.

MOTOROLA DSP563CCC User’s Manual B-3

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

asm56300 -b main io

In this example it is not clear whether the file main is a source file or is
meant to be an argument to the -B option. If the ambiguity is not resolved,
the assembler will assume that main is a source file and attempt to open it
for reading. This may not be what the programmer intended.

There are several ways to avoid this ambiguity. If main is supposed to be
an argument to the -B option, it can be placed immediately after the option
letter, without intervening white space:

asm56300 -b main io

If there are other options on the command line besides those that take op-
tional arguments, the other options can be placed between the ambiguous
option and the list of source file names:

asm56300 -b main -v io

Alternatively, two successive hyphens may be used to indicate the end of
the option list:

asm56300 -b -- main io

In this case the assembler interprets main as a source file name and uses
the default naming conventions for the -B option.

 -A Indicates that the assembler should operate in absolute mode, creating a
load file (.cld) if the -B option is given. By default, the assembler produces
a link file (.cln) which is subsequently processed by the Motorola DSP linker.

-B[<objfil >]
This option specifies that an object file is to be created for assembler out-
put. objfil can be any legal operating system file name, including an option-
al pathname. A hyphen may also be used as an argument to indicate that
the object file should be sent to the standard output.

If a path is not specified, the file will be created in the current directory. If no
file name is supplied, the assembler will use the basename (file name with-
out extension) of the first file name encountered in the source input file list.
The resulting output file will have an extension of .cln unless the -A option
is given in which case the file will have a .cld extension. If the -B option is

B-4 DSP563CCC User’s Manual MOTOROLA

not given, then the assembler will not generate an object file. The -B option
should be specified only once.

-D<symbol > <string >
This is equivalent to a source statement of the form:

DEFINE <symbol> <string>

string must be enclosed in quotes if it contains any embedded blanks.
Note that if quotes are used, they must be passed to the assembler intact,
e.g. some host command interpreters will strip quotes from around argu-
ments. The -D<symbol> <string> sequence may be repeated as often as
desired.

-F<argfil >
This option indicates that an external file should be read for further com-
mand arguments. It is useful in host environments where the command line
length is restricted. argfil must be present on the command line, but can be
any legal operating system file name including an optional pathname.

The file may contain any legal command line options, including the -F op-
tion itself. The arguments need be separated only by white space (spaces,
tabs, or newlines). A semicolon (;) on a line following white space causes
the rest of the line in the file to be treated as a comment.

-G
Send source file line number information to the object file. This option is
valid only in conjunction with -B command line option. The generated line
number information can be used by debuggers to provide source-level de-
bugging.

-I<ipath >
When the assembler encounters include files, the current directory (or the
directory specified in the INCLUDE directive) is first searched for the file. If
it is not found and the -l option is supplied, the assembler prefixes the file
name (and optional pathname) specified in the INCLUDE directive with ip-
ath and searches the newly formed directory pathname for the file. The
-I<ipath > sequence may be repeated as many times as desired. The direc-
tories will be searched in the order given on the command line.

-L[< lstfil >]
This option specifies that a listing file is to be created for the assembler out-
put. lstfil can be any legal operating system file name including an optional
pathname. A hyphen also may be used as an argument to indicate that the
listing file should be sent to the standard output.

MOTOROLA DSP563CCC User’s Manual B-5

If a path is not specified, the file will be created in the current directory. If no
file name is supplied, the assembler will use the basename (file name with-
out extension) of the first file name encountered in the source input file list.
The resulting output file will have an extension of .lst. If the -L option is not
given, then the assembler will route the listing output to the standard out-
put. The -L option should be specified only once.

 -M<mpath >
This is equivalent to a source statement of the form:

MACLIB <mpath>

The -M<mpath > sequence may be repeated as many times as desired.
The directories will be searched in the order specified on the command
line.

 -O<opt >[,<opt >...]
opt can be any of the options that are available with the assembler OPT di-
rective. If multiple options are supplied, they must be separated by com-
mas. The -O<opt > sequence may be repeated for as many options as
desired.

-V Indicates that the assembler should be verbose during processing, display-
ing a progress report as it assembles the input files. The assembler will
show the beginning of each pass and when files are opened and closed.
The information is sent to the standard error output stream.

B-6 DSP563CCC User’s Manual MOTOROLA

NAME
cldinfo — Memory size information from Motorola DSP COFF object file.

SYNOPSIS
cldinfo file

DESCRIPTION
cldinfo is a utility that reads an absolute or relocatable Common Object
File Format (COFF) file and produces a formatted display of the program
memory size, data memory size and the programs starting address.

file is the name of a Motorola DSP COFF format object file. Only a single
file name may be supplied.

MOTOROLA DSP563CCC User’s Manual B-7

NAME
cldlod — Motorola COFF to LOD Format converter

SYNOPSIS
cldlod cldfile > lodfile

DESCRIPTION
cldlod is a utility that converts a binary COFF object file into an ascii LOD
file.

cldfile is an operating system compatible filename which contains COFF
information. Only a single file name may be supplied, and it must be explic-
it; there is no default extension for the input file.

lodfile is an LOD file.

B-8 DSP563CCC User’s Manual MOTOROLA

NAME
cofdmp —Motorola DSP COFF File Dump Utility

SYNOPSIS
cofdmp [-cfhlorstv] [-d file] files

DESCRIPTION
cofdmp is a utility that reads an absolute or relocatable COFF file and pro-
duces a formatted display of the object file contents. The entire file or only
selected portions may be processed depending on command line options.
The program also can generate either codes or symbolic references to en-
tities such as symbol type or storage class.

file is an operating system compatible file name. Only a single file name
may be supplied, and it must be explicit; there is no default extension for
the input file.

OPTIONS
Any of the following command line options may be given. Option letters
may be entered in either upper or lower case. If no option is specified, the
entire object file is dumped.

-c Dump the object file string table. This information may not be available if the
object file has been stripped.

-d Dump to output file.

-f Dump the file header of the object file.

-h Dump the object file section headers.

-l Dump the object file line number information. This information may not be
available if the object file has been stripped.

-o Dump the object file optional header.

-r Dump the object file relocation information. This information is available only
in relocatable object files.

-s Dump the object file raw data contents.

-t Dump the object file symbol table.

-v Dump the object file symbolically, expanding bit flag, symbol type, and stor-
age class names.

MOTOROLA DSP563CCC User’s Manual B-9

NAME
dsplib — Motorola DSP COFF Librarian

SYNOPSIS
dsplib [-a | -c | -d | -l | -r | -u | -v | -x] [-f<argfil >] library [files...]

DESCRIPTION
dsplib is a utility that allows separate files to be grouped together into a
single file. The resulting library file can then be used for linking by the Mo-
torola DSP Cross Linker program or for general-purpose archival storage.

library is an operating system compatible file name (including optional
pathname) indicating the library file to create or access. If no extension is
supplied, the librarian will automatically append .clb to the file name. If no
pathname is specified, the librarian will look for the library in the current di-
rectory.

files is a list of operating system compatible file names. For input opera-
tions the file names may also contain an optional pathname; the path is
stripped when the file is written to the library. For output operations only the
file name should be used to refer to library modules.

If no arguments are given on the command line, the librarian enters an in-
teractive mode where multiple commands may be entered without exiting
the program. The syntax for the interactive mode is command library
[files...] where command is an action corresponding to one of the options
listed below, library is the library name, and files is the optional (based on
the action requested) list of files/modules upon which to operate. For ex-
ample the command add foo bar.cln adds the module bar.cln to the library
foo. Because interactive input is taken from the standard input channel of
the host environment, it is possible to create a batch of librarian commands
and feed them to the program for execution via redirection. For more infor-
mation on interactive commands, invoke the librarian without any argu-
ments and enter help.

OPTIONS
Only one of the following command line options may be given for each in-
vocation of the librarian. Option letters may be entered in either upper or
lower case. If no option is given, the librarian operates as if the -U option
were specified.

B-10 DSP563CCC User’s Manual MOTOROLA

-a This option adds the modules in the file list to the named library. The library
file must exist and the modules must not already be in the library.

-c Create a new library file and add any specified modules to it. If the library file
already exists, an error is issued.

-d Delete named modules from the library. If the module is not in the library, an
error is issued.

-f<argfil >
This option indicates that an external file should be read for further com-
mand arguments. It is useful in host environments where the command line
length is restricted. argfil must be present on the command line but can be
any legal operating system file name, including an optional pathname.

argfil is a text file containing module names to be passed to the librarian.
The names need be separated only by white space (spaces, tabs, or new-
lines). A semicolon (;) on a line following white space causes the rest of the
line to be treated as a comment.

-l List library contents. This option lists the module name as contained in the
library header, the module size (minus library overhead), and the date and
time the file was stored into the library. The listing output is routed to stan-
dard output so that it may be redirected to a file if desired.

-r This option replaces the named modules in the given library. The modules
must already be present in the library file.

-u This option updates the specified modules if they exist in the library; other-
wise it adds them to the end of the library file.

-v This option displays the librarian version number and copyright notice.

-x Extract named modules from the library. The resulting files are given the
name of the modules as stored in the library module header. All files are cre-
ated in the current working directory.

MOTOROLA DSP563CCC User’s Manual B-11

NAME
dsplnk — Motorola DSP COFF Linker

SYNOPSIS
dsplnk [-B [<lodfil>]] [-F<argfil>] [-I] [-L<library>] [-M<mapfil>] [-N]

[-O<mem>[<ctr>][<map>]:<origin>] [-P<lpath>] [-R<ctlfil>] [-Z]

[-U<symbol>] [-V] [-X<opt>[, <opt>...]] [-Z] <files...>

DESCRIPTION
dsplnk is a program that processes relocatable link files produced by the
DSP assemblers, generating an absolute load file which can be

1. loaded directly into the Motorola DSP simulator or

2. converted to Motorola S-record format for PROM burning.

files is a list of operating system compatible file names including optional
pathnames. If no extension is supplied for a given file, the linker will first at-
tempt to open the file using the file name as supplied. If that is not success-
ful the linker appends .cln to the file name and tries to open the file again. If
no pathname is supplied for a given file, the linker will look for that file in the
current directory. The list of files will be processed sequentially in the order
given and all files will be used to generate the load file and map listing.

Note that some options (-B and -M) allow a hyphen as an optional argu-
ment which indicates that the corresponding output should be sent to the
standard output stream. Unpredictable results may occur if, for example,
the object file is explicitly routed to standard output while the listing file is al-
lowed to default to the same output stream.

OPTIONS
Any of the following command line options may be specified. These can be
in any order but must precede the list of link file names (except for the -L
option). Option letters may be specified in either upper or lower case.

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

dsplnk -b main io

In this example it is not clear whether the file main is a link file or is meant

B-12 DSP563CCC User’s Manual MOTOROLA

to be an argument to the -B option. If the ambiguity is not resolved, the link-
er will assume that main is a link file and attempt to open it for reading. This
may not be what the programmer intended.

There are several ways to avoid this ambiguity. If main is supposed to be
an argument to the -B option, it can be placed immediately after the option
letter without intervening white space:

dsplnk -b main io

If there are other options on the command line besides those that take op-
tional arguments the other options can be placed between the ambiguous
option and the list of link file names.

dsplnk -b main -v io

Alternatively, two successive hyphens may be used to indicate the end of
the option list:

dsplnk -b -- main io

In this case the linker interprets main as a link file name and uses the de-
fault naming conventions for the -B option.

-B[<objfil >]
This option specifies a name for the object file generated by the linker. ob-
jfil can be any legal operating system file name including an optional path-
name. A hyphen may also be used as an argument to indicate that the
object file should be sent to the standard output.

If a pathname is not given, the file will be created in the current directory. If
no file name is supplied or if the -B option is not given, the linker will use
the basename (file name without extension) of the first file name encoun-
tered in the link input file list. The resulting output file will have an extension
of .cld. The -B option should be specified only once.

-F<argfil >
This option indicates that an external file should be read for further com-
mand arguments. It is useful in host environments where the command line
length is restricted. argfil must be present on the command line but can be
any legal operating system file name, including an optional pathname.

The file may contain any legal command line options including the -F option
itself. The arguments need be separated only by white space (spaces,
tabs, or newlines). A semicolon (;) on a line following white space causes
the rest of the line to be treated as a comment.

MOTOROLA DSP563CCC User’s Manual B-13

-I Under normal operation, the linker produces an absolute load file as output.
If the -I option appears on the command line, the linker combines the input
files into a single relocatable link file suitable for a subsequent linker pass.
No absolute addresses are assigned and no errors are issued for unre-
solved external references.

-L<library >
The linker ordinarily processes a list of link files which each contain a single
relocatable code module. If the -L option is encountered, the linker treats
the accompanying pathname as a library file, and searches the file for any
outstanding unresolved references.

If a module is found in the library that resolves an outstanding external ref-
erence, the module is read from the library and included in the load file out-
put. The linker continues to search a library until all external references are
resolved or no more references can be satisfied within the current library.
The linker searches a library only once: when it is encountered on the com-
mand line. Therefore, the position of the -L option on the command line is
significant.

-M[<mapfil >
This option specifies that a map file is to be created. mapfil can be any le-
gal operating system file name including an optional pathname.

If a pathname is not given, the file will be created in the current directory. If
no file name is supplied, the linker will use the basename (file name without
extension) of the first file name encountered in the link input file list. The re-
sulting output file will have an extension of .map. The linker will not gener-
ate a map file if the -M option is not specified. The -M option should be
specified only once.

-N Indicates that the linker should ignore case in symbol names. Ordinarily the
linker is sensitive to upper and lower case letters in symbol names. If the -N
option is supplied, then the linker maps all symbol characters to lower case.

-O<mem>[<ctr >][<map>]:<origin >
By default, the linker generates instructions and data for the load file begin-
ning at absolute location zero for all DSP memory spaces. This option al-
lows the programmer to redefine the start address for any memory space
and associated location counter.

mem is one of the single-character memory space identifiers (X, Y, L, and
P). The letter may be upper or lower case. The optional ctr is a letter indi-
cating the high (H) or low (L) location counters. If no counter is specified,
the default counter is used. map is also optional and signifies the desired

B-14 DSP563CCC User’s Manual MOTOROLA

physical mapping for all relocatable code in the given memory space. It
may be I for internal memory, E for external memory, or B for bootstrap
memory (valid only in P program memory space). If map is not supplied,
then no explicit mapping is presumed.

The origin is a hexadecimal number signifying the new relocation address
for the given memory space. The -O option may be specified as many
times as needed on the command line.

-P<lpath >
When the linker encounters a library specification on the command line, the
current directory (or the directory given in the library specification) is first
searched for the library file. If it is not found and the -P option is supplied,
the linker prefixes the file name (and optional pathname) provided in the li-
brary specification with lpath and searches the newly formed directory
pathname for the file. The directories will be searched in the order given on
the command line.

-R[<ctlfil >]
This option indicates that a memory control file is to be read to determine
the absolute placement of sections in DSP memory. ctlfil can be any legal
operating system file name including an optional pathname.

If a pathname is not given, an attempt will be made to open the file in the
current directory. If no file name is supplied, the linker will use the base-
name (file name without extension) of the first file name encountered in the
link input file list, appending an extension of .ctl. If the -R option is not spec-
ified, then the linker will not use a memory map file. The -R option should
be specified only once.

-U<symbol >
Causes symbol to be entered into the unresolved external reference table.
This is useful when the initial or only link file is a library. Since there are no
external references when the linker is invoked, the -U option may be used
to force inclusion of a library module that resolves the undefined reference.
The -U option may be specified as often as desired.

-V Indicates that the linker should be verbose during processing, displaying a
progress report as it links the input files. The linker will show the beginning
of each pass and when files are opened and closed. The information is sent
to the standard error output stream.

-X<opt>[,<opt>,...,<opt>]
The -X option directs the linker to perform differently than the standard op-
eration of the linker.The options are described below with their different op-

MOTOROLA DSP563CCC User’s Manual B-15

erations performed. All options may be preceded by NO to reverse their meaning.
The -X<opt> sequence can be repeated for as many options as desired.

Option Meaning

XC Relative terms from different sections used in an
expression cause an error.

RSV Reserve special target processor memory areas.

AEC Check form of address expressions.

RO Allow region overlap.

ESO Do not allocate memory below ordered sections.

ASC Enable absolute section bounds checking.

-Z The linker strips source file line number and symbol information from the in-
put file. Symbol information normally is retained for debugging purposes.
This option has no effect if incremental linking is being done (see the -l op-
tion).

B-16 DSP563CCC User’s Manual MOTOROLA

NAME
run563 — Motorola DSP563XX Simulator Based Execution Device.

SYNOPSIS
run563 [-b BCR_VALUE] [-s STATE_FILE] [t] [file]

DESCRIPTION
run563 is a COFF object file execution utility that provides operating sys-
tem style hooks to support hosted ANSI run-time library routines such as
printf() .

file is an operating system compatible file name. Only a single file name
may be supplied and it must be explicit; there is no default extension for the
input file.

OPTIONS
-b BCR_VALUE

Use BCR_VALUE to set the DSP563XX bus control register. Default bcr
value is $212421.

-c Store the simulator state to a file if the execution of
run563 is terminated prematurely (for instace by killing the process).

-d DEVICE
Use the string specified to select an alternate execution device.

-l Be loud and let the user know what is occuring (loading, executing, etc.).
Current status is printed to stderr.

-t Update global C variable __time at each clock tick. Used to benchmark
code. Report the number of instruction cycles that elapsed upon program
termination.

-x Indicates the input file was generated from the x memory model of C com-
piler. The C compiler may use x, y or l memory model for the compilation
(refer to the option -m of the C compiler), and this option directs the
run563 program to use the X memory space for data buffer. Without this op-
tion, y memory model or L memory model is assumed.

-v Display the version number of the program.

MOTOROLA DSP563CCC User’s Manual B-17

NAME
srec — Motorola DSP S-Record Conversion Utility

SYNOPSIS
srec [-b | -w] [-m | -s] [-l] [-r] <files ...>

DESCRIPTION
srec converts Motorola DSP .cld and .lod format files into Motorola
S-record files. The S-record format was devised for the purpose of encod-
ing programs or data files in a printable form for transportation between
computer systems. Motorola S-record format is recognized by many
PROM programming systems.

files is a list of operating system compatible file names. If no pathname is
specified for a given file, srec will look for that file in the current directory. If
the special character ‘-’ is used as a file name srec will read from the stan-
dard input stream. The list of files will be processed sequentially in the or-
der given.

OPTIONS
-b Use byte addressing when transferring load addresses to S-record address-

es. This means that load file DATA record start addresses are multiplied by
the number of bytes per target DSP word and subsequent S1/S3 record ad-
dresses are computed based on the data byte count. The -b and -w options
are mutually exclusive.

-l Use double-word addressing when transferring load addresses from L
space to S-record addresses. This means that load file DATA records for L
space data are moved unchanged and subsequent S1/S3 record addresses
are computed based on the data word count divided by 2. This option should
always be used when the source load file contains DATA records in L mem-
ory space.

-m Split each DSP word into bytes and store the bytes in parallel S-records.
The -m and -s options are mutually exclusive.

-r Write bytes high to low, rather than low to high. This option has no effect
when used with the -m option.

-s Write data to a single file, putting memory space information into the ad-
dress field of the S0 header record. The -m and -s options are mutually ex-
clusive.

B-18 DSP563CCC User’s Manual MOTOROLA

-w Use word addressing when transferring load addresses to S-record ad-
dresses. This means that load file DATA record start addresses are moved
unchanged and subsequent S1/S3 record addresses are computed based
on the data word count.

MOTOROLA DSP563CCC User’s Manual C-1

Appendix C
GNU General Public License

The following license applies to only those programs in this package derived from GNU
source code. Specifically, it is limited to g563c , g563-cc1 , and mcpp .

Version 1, February 1989

Copyright 1989 Free Software Foundation, Inc.
675 Mass Ave., Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The license agreements of most software companies try to keep users at the mercy of
those companies. By contrast, our General Public License is intended to guarantee your
freedom to share and change free software---to make sure the software is free for all its
users. The General Public License applies to the Free Software Foundation’s software
and to any other program whose authors commit to using it. You can use it for your pro-
grams, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away
or sell copies of free software, that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this li-
cense which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not

C-2 DSP563CCC User’s Manual MOTOROLA

the original, so that any problems introduced by others will not reflect on the original au-
thors’ reputations.

The precise terms and conditions for copying, distribution and modification follow.

MOTOROLA DSP563CCC User’s Manual C-3

TERMS AND CONDITIONS
1. This License Agreement applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or any
work containing the Program or a portion of it, either verbatim or with
modifications. Each licensee is addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this General Public License and to the ab-
sence of any warranty; and give any other recipients of the Program a copy of this
General Public License along with the Program. You may charge a fee for the
physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy
and distribute such modifications under the terms of Paragraph 1 above, provided
that you also do the following:

• cause the modified files to carry prominent notices stating that you changed
the files and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in
part contains the Program or any part thereof, either with or without modifica-
tions, to be licensed at no charge to all third parties under the terms of this
General Public License (except that you may choose to grant warranty protec-
tion to some or all third parties, at your option).

• If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest
and most usual way, to print or display an announcement including an appro-
priate copyright notice and a notice that there is no warranty (or else, saying
that you provide a warranty) and that users may redistribute the program un-
der these conditions, and telling the user how to view a copy of this General
Public License.

• You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its deriva-
tive) on a volume of a storage or distribution medium does not bring the other
work under the scope of these terms.

C-4 DSP563CCC User’s Manual MOTOROLA

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1
and 2 above provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Paragraphs 1 and 2 above;
or,

• accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed
under the terms of Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncom-
mercial distribution and only if you received the program in object code or exe-
cutable form alone.)

Source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable file, complete source code means all the
source code for all modules it contains; but, as a special exception, it need not
include source code for modules which are standard libraries that accompany
the operating system on which the executable file runs, or for standard header
files or definitions files that accompany that operating system.

5. You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to
copy, modify, sublicense, distribute or transfer the Program is void, and will auto-
matically terminate your rights to use the Program under this License. However,
parties who have received copies, or rights to use copies, from you under this
General Public License will not have their licenses terminated so long as such
parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Pro-
gram) you indicate your acceptance of this license to do so, and all its terms and
conditions.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distrib-
ute or modify the Program subject to these terms and conditions. You may not im-
pose any further restrictions on the recipients’ exercise of the rights granted
herein.

MOTOROLA DSP563CCC User’s Manual C-5

The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

8. Each version is given a distinguishing version number. If the Program specifies a
version number of the license which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any lat-
er version published by the Free Software Foundation. If the Program does not
specify a version number of the license, you may choose any version ever pub-
lished by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY
1. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

C-6 DSP563CCC User’s Manual MOTOROLA

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to hu-
manity, the best way to achieve this is to make it free software which everyone can redis-
tribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 1, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, write to the Free Software Foundation, Inc., 675 Mass Ave., Cambridge, MA
02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an in-
teractive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it under certain conditions;
type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu
items---whatever suits your program.

MOTOROLA DSP563CCC User’s Manual C-7

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (a
program to direct compilers to make passes at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

That’s all there is to it!

C-8 DSP563CCC User’s Manual MOTOROLA

MOTOROLA DSP563CCC User’s Manual INDEX-1

INDEX

—
#pragma . 5-17

#pragma directive 5-17

.cld . 3-1

.cln . 3-1

_ . 6-8

_ _asm . 5-2

multiple instructions 5-2

reg_save . 5-7

_ _asm() . 5-2

_ _c_sig_goto_dispatch 6-8

_ _c_sig_handlers 6-8

_ _DATE_ _ . 4-2

_ _FILE_ _ . 4-2

_ _INCLUDE_LEVEL_ _ 4-2

_ _LINE_ _ . 4-2

_ _mem_limit 6-7

_ _MOTOROLA_DSP_ _ 4-2

_ _receive . 6-8

_ _send . 6-8

_ _sig_dfl . 6-10

_ _sig_drop_count 6-10

_ _sig_err . 6-10

_ _sig_ign . 6-10

_ _stack_safety 6-7

_ _STDC_ _ . 4-2

_ _time . 6-7

_ _TIME_ _ . 4-2

_ _VERSION_ _ 4-2

__DSP563C__ 4-2

—Numerics
80386 . 2-1

80486 . 2-1

—A—
a.cld . 2-6

abort .A-7

abs .A-8

Accumulator Registers 4-7

acos .A-9

address ALU . 4-7

address offset registers 4-7

address registers 4-7

affine arithmetic 4-3

-alo 3-3, 3-20, 4-18

alo563 . 1-1

ANSI 1-1, 1-4, 1-5

asin .A-10

-asm option 3-3, 3-29

asm56300 . 1-1

atan .A-11

atan2 .A-12

atexit .A-14

atof .A-15

atoi .A-16

atol .A-17

autoexec.bat 2-1, 2-3

—B—
-B option 3-3, 3-4

-b option 3-3, 3-4

Index

INDEX-2 DSP563CCC User’s Manual MOTOROLA

bar . 2-3, 2-4

bsearch . A-18

—C—
-C option 3-3, 3-7

-c option 3-3, 3-29

calloc 4-14, 6-7, A-20

ceil . A-22, A-23

char . 4-2

cldinfo . 1-1, 1-3

cldlod 1-1, 1-3, B-7

cofdmp .1-1, B-8

COFF . 1-1, 3-1

compiler’s dsp directory tree 2-2, 2-4, 2-5,
2-6

constant folding 4-15

control line . 3-11

control program 3-1

cos . A-24

cosh . A-25

counter_string 5-17

-crt option 3-3, 3-30

crt0 . 6-1

—D—
-D option 3-3, 3-8

data ALU . 4-7

Data Memory Configuration 4-11

data segments 6-3

DELETESWAP 2-3

denormalized numbers 4-3

div . A-26

DOS extended memory manager . . . 2-2

DOS4GVM . 2-3

DOS4GVM.SWP 2-3

dos4gw.exe . 2-2

double . 4-3

DSIZE . 6-2

dsp . 2-1

dsplib . 1-1, B-9

dsplnk . 1-1, B-11

DSPLOC 2-1, 2-4, 2-5, 2-6

—E—
-E option 3-3, 3-9

ENOMEM . 4-14

errno . 4-14, 6-7

exit .A-27

exp .A-28

exponent . 4-5

—F—
fabs A-29, A-30, A-31, A-32

-fcaller-saves option 3-3, 3-21

-fcond-mismatch option 3-3, 3-21

-ffixed-REG option 3-3, 3-21

-fforce-addr option 3-3, 3-21

file inclusion 3-11

-finline-functions option 3-3, 3-21

-fkeep-inline-functions option . . 3-3, 3-21

float . 4-3

floor . A-33, A-34, A-35, A-36, A-37, A-54,
A-55, .A-56

fmod .A-38

-fno-defer-pop option 3-3, 3-20

-fno-opt option 3-3, 3-20

-fno-peephole option 3-3, 3-20

-fno-strength-reduce option 3-3, 3-20

free A-39, A-41, A-42, A-43, A-44, A-45, A-
46, A-53, A-99

frexp . A-47, A-48

-fvolatile option 3-3, 3-21

MOTOROLA DSP563CCC User’s Manual INDEX-3

Index

-fwritable-strings option 3-3, 3-21

—G—
-g option 3-3, 3-22

g561c 2-4, 2-5, 2-6

g563c 1-1, 1-3, 1-5

g563-cc1 1-1, 1-5

global assembler directive 5-24

global-static data segment 6-3

—H—
hello.c . 2-6

host port . 6-2

—I—
-I option 3-3, 3-11, 3-12

-i option 3-3, 3-14

identifier length limits 4-1

IEEE STD 754-1985 4-3

in-line assembly

examples 5-7

instruction template 5-2

OES syntax 5-4

in-line assembly code 5-1

Input Registers 4-7

install.exe . 2-1

int . 4-2

interrupt vectors 6-1

interrupts

assembly language 6-6

isalnumA-51, A-52, A-57

isalpha . A-58

iscntrl . A-59

isdigit . A-60

isgraph . A-61

islower . A-62

isprint .A-63

ispunct .A-64

isspace .A-65

isupper .A-66

isxdigit .A-67

—J—
-j option 3-3, 3-30

—L—
-l option 3-3, 3-31

l_run . 5-18

labs .A-68

ldexp .A-69

ldiv .A-70

log .A-71

log10 .A-72

long . 4-2

longjmp 3-25, 3-26, 6-2, 6-10, A-73

—M—
-M option 3-3, 3-15

malloc 4-14, 6-7, A-75

Mantissa . 4-5

map files . 3-31

MAXMEM . 2-3

MB_CUR_MAXA-163

mblen .A-76

mbstowcs .A-78

mbtowc .A-81

-mconserve-p-mem option 3-22

mcpp . 1-1, 1-5

memchr .A-83

memcmp .A-85

memcpy .A-87

memmove .A-88

Index

INDEX-4 DSP563CCC User’s Manual MOTOROLA

memset . A-89

MINMEM . 2-3

-ml-memory option 3-3, 3-23, 3-24

-MM option 3-3, 3-15

-mno-biv-plus-linv-promotion option . . 3-3,
3-23

-mno-do-loop-generation option . 3-3, 3-23

-mno-dsp-optimization option . . . 3-3, 3-23

modf . A-91

modifier registers 4-7

-mp-mem-switchtable 3-23

-mp-mem-switchtable option 3-3

-mstack_check option 4-14

-mstack-check option 3-3, 3-24

-mx-memory option 3-3, 3-23, 3-24

-my-memory option 3-3, 3-23, 3-24

—N—
NaNs . 4-3

-nostdinc option 3-3, 3-16

—O—
-O option 3-3, 3-22

-o option . 3-3, 3-6

omr . 6-2

Option, Assemble

-asm string 3-29

-c . 3-29

Option, Command line

-Bdirectory 3-4

-bPREFIX 3-4

-o FILE . 3-6

-v . 3-6

Option, Compile

-fcaller-saves 3-21

-fcond-mismatch 3-21

-ffixed-REG 3-21

-fforce-addr 3-21

-finline-functions 3-21

-fkeep-inline-functions 3-21

-fno-defer-pop 3-20

-fno-opt . 3-20

-fno-peephole 3-20

-fno-strength-reduce 3-20

-fvolatile . 3-21

-fwritable-strings 3-21

-g . 3-22

-mconserve-p-mem 3-22

-ml-memory 3-24

-mno-biv-plus-linv-promotion 3-23

-mno-do-loop-generation 3-23

-mno-dsp-optimization 3-23

-mstack-check 3-24

-mx-memory 3-23

-my-memory 3-24

-O . 3-22

-pedantic 3-24

-Q . 3-24

-S . 3-24

-W . 3-25

-w . 3-25

-Wall . 3-28

-Wcast-qual 3-29

-Wid-clash-LEN 3-29

-Wimplicit 3-27

-Wpointer-arith 3-29

-Wreturn-type 3-27

-Wshadow 3-29

-Wswitch 3-28

-Wunused 3-28

-Wwrite-strings 3-29

Option, Link

MOTOROLA DSP563CCC User’s Manual INDEX-5

Index

-crt file . 3-30

-j string . 3-30

-lLIBRARY 3-31

-r MAPFILE 3-31

Option, Preprocessor

-C . 3-7

-DMACRO 3-8

-DMACRO=DEFN 3-9

-E . 3-9

-I- . 3-12

-i FILE . 3-14

-IDIR . 3-11

-M . 3-15

-MM . 3-15

-nostdinc 3-16

-pedantic 3-17

-UMACRO 3-18

-v . 3-17

-Wcomment 3-19

-Wtrigraphs 3-20

out-of-line calling C routines 5-25

—P—
-P option . 3-3

p_run . 5-18

-pedantic option 3-3, 3-17, 3-24

perror . A-92

pow . A-93

pragma . 5-17

printf . A-94

Program Memory Configuration 4-9

program segment 6-3

putchar . A-100

puts . A-101

—Q—
-Q option 3-3, 3-24

qsort .A-102

—R—
-r option 3-3, 3-31

raise . 6-1, A-104

rand .A-105

realloc 4-14, 6-7, A-106

Reserved exponents 4-5

run563 . 1-1, 1-3

run56sim . 2-6

—S—
-S option 3-3, 3-24

setjmp . 3-26, 6-1, 6-10, A-108, A-109, A-
110, A-112

short . 4-2

SIG_ERR . 6-10

SIG_IGN . 6-10

signal . 6-1, A-116

signal file . 6-8

sin .A-118

sinh .A-119

sizeof . 4-2

sprintf .A-120

sqrt .A-122

srec 1-1, 1-3, B-17

stack pointer 4-8, 4-9, 6-2

standard directory search list 3-2

standard include directory 3-11

strcat A-124, A-125

strchr .A-126

strcmp .A-127

strcoll .A-129

strcpy .A-130

Index

INDEX-6 DSP563CCC User’s Manual MOTOROLA

strcspn . A-131

strerror . A-132

string constant label 4-12

strip . 1-1

strlen . A-133

strncat . A-134

strncmp . A-135

strncpy . A-136

strpbrk A-137, A-139

strstr A-140, A-141

strtod . A-142

strtok . A-144

strtol . A-146

strtoul . A-148

strxfrm . A-150

SWAPNAME 2-3

—T—
tan . A-151

tanh . A-152

template-epilogue 5-23

tolowerA-153, A-154, A-155

toupper . A-156

—U—
-U option 3-3, 3-18

unsigned char 4-2

unsigned int . 4-2

unsigned long 4-2

unsigned short 4-2

—V—
-v option 3-3, 3-6, 3-17

VIRTUALSIZE 2-3

volatile 3-21, 3-25, 4-16, 5-17

—W—
-W option3-3, 3-19, 3-25

-w option . 3-25

-Wall option 3-3, 3-28

-Wcast-qual option 3-3, 3-29

wcstombs A-157, A-158, A-159, A-160, A-
161

wctomb .A-163

-Wid-clash-LEN option 3-3, 3-29

-Wimplicit option 3-3, 3-27

-Wpointer-arith option 3-3, 3-29

-Wreturn-type option 3-3, 3-27

-Wshadow option 3-3, 3-29

-Wswitch option 3-3, 3-28

-Wunused option 3-3, 3-28

-Wwrite-strings option 3-3, 3-29

—X—
x_load . 5-18

x_run . 5-18

XDEF assembler directive 5-24

XREF assembler directive 5-24

—Y—
y_run . 5-18

Name _________________________ Company Name________________________

Street__________________________City_______________ Zip code___________

Phone________________________ Date__________________________________

Version Number:_____________ Serial Number_____________________________

Rate the impact of this problem (select those applicable).

Shut down system Software development halted

Needs eventual fix Suggested enhancement

Describe the system used with this product (include PC manufacturer, Operating sys-
tem type and version, memory size, and configuration.

Describe the problem and give details on how it can be reproduced, and any sugges-
tions on how it can or may be fixed. Use extra sheets if needed.

DSP563CCC Optimizing C Compiler Trouble Report
DSP Applications Assistance – (512) 891-3230

