
Audio Processing

1. Linear Processing (filters, equalizer, delays effects, modulation)

2. Nonlinear Processing (dynamics processing, distortion, octaver)

3. Time-Frequency Processing

(a) Phase Vocoder Techniques

(b) Peak Based Techniques

(c) Linear Predictive Coding

(d) Cepstrum

4. Time-Domain Methods

5. Spatial Effects

(a) Sound Field Methods

(b) Reverberation

(c) Convolution Methods

6. Audio Coding

Introduction

t ω0
continuous FT F (ω) =∫∞

−∞ f (t)e−iωt dt

t
0 2π k0

Fourier series F [k] =∫2π
0 f (t)e−ikt dt

l0 n k0 n
DFT (FFT) F [k] =∑n−1

l=0 f [l]e−i2πkl /n

k0 t0 2π
DTFT F (ω) =∑∞

k=−∞ f [k]e−iωk

k0

ℑz

ℜz
z-transform F (z) =∑∞

k=−∞ f [k]z−k

Linearity of z-transform:

g [t]= a f [t]⇒G(z)= aF (z), g [t]= f1[t]+ f2[t]⇒G(z)= F1(z)+F2(z) .

Time delay of 1⇒multiplication by z−1:

g [t]= f [t −1] ⇒
G(z)=

∑
g [t]z−t =

∑
f [t −1]z−t s=t−1======

∑
f [s]z−(s+1)

= z−1
∑

f [s]z−s = z−1F (z)

FIR (finite impulse response) filters:

y[t]= (h∗x)[t]= h[0]x[t]+h[1]x[t −1]+ . . .+h[n]x[t −n] ⇒
Y (z)= h[0]X (z)+h[1]z−1X (z)+ . . .h[n]z−n X (z)

= (h[0]+h[1]z−1+ . . .h[n]z−n)X (z)

=H(z)X (z) ,

h∗x . . . convolution of x and h
H . . . transfer function

IIR (infinite impulse response) filters:

y[t]= (h∗x)[t]

= h[0]x[t]+ . . .h[n]x[t −n]

+ĥ[1]y[t −1]+ . . .+ ĥ[m]y[t −m]

y[t]− ĥ[1]y[t −1]− . . .− ĥ[m]y[t −m]= h[0]x[t]+ . . .h[n]x[t −n]

(1− ĥ[1]z−1− . . .− ĥ[m]z−m)Y (z)= (h[0]+h[1]z−1+ . . .h[n]z−n)X (z)

Y (z)= h[0]+h[1]z−1+ . . .h[n]z−n

1− ĥ[1]z−1− . . .− ĥ[m]z−m
X (z)

Y (z)=H(z)X (z)

(Complex) signal x = eiωt = z t , ω ∈ {0.1π,0.4π,0.8π} (solid line)
Filtering (dashed line) by the filter h = (0.5,0.5) (H(z)= 0.5+0.5z−1

z H(z) z H(z) z H(z)

ℜx,h ∗ℜx

ℑx,h ∗ℑx

Assume: sampling rate 1 ⇒ f from 0 to 0.5 (the Nyquist frequency), ω= 2π f from 0 to π

1 Linear Processing

control flow signal flow
controls signal flow controls signal
slow (every 16 to 4096 samples) fast

Parametric filters (easy to change properties)
Parametric allpass filter (first order):

y[t]= (a∗x)[t]= cx[t]+x[t −1]− c y[t −1]

Transfer function:

A(z)= c+ z−1

1+ cz−1

A(ei0)

A(ei2π fc)

A(ei2π0.5) L(ei0)

L(ei2π fc)

L(ei2π0.5) H(ei0)

H(ei2π fc)

H(ei2π0.5)

Transfer functions for allpass (A), lowpass (L) and highpass (H). fc = 0.1
Magnitude response = 1:

|A(z)| = |c+ z−1|
|1+ cz−1| =

|c+ z−1|
|z−1| · |z+ c|

|z|=1===== 1

Phase response

ϕ= arg(A(eiω))=





0 ω= 0

−90◦ “cutoff”-frequency ω= 2π fc , A(z)= A(e−iω)=−i

−180◦ Nyquist rate ω=π

c+ z−1

1+ cz−1 =−i

c+ z−1 =−i− icz−1

c(1+ iz−1)=−(i+ z−1) | · (1− iz)

c(1+ iz−1− iz+1)=−(i+ z−1+ z− i)

c(2+2sinω)=−2cosω

c =− cosω

1+ sinω
= tan(π fc)−1

tan(π fc)+1

Phase response of parametric allpass filter with fc = 0.01

-180

-135

-90

-45

 0

 0.001 0.01 0.1

Phase

 0

 10

 20

 30

 40

 0.001 0.01 0.1

Group delay in samples

Parametric lowpass:

y = l ∗x = x+a∗x

2
, L(z)= 1+ A(z)

2

Parametric highpass: substitute − for +, i.e. h∗x = x−a∗x
2

Response of parametric lowpass and highpass filters with fc = 0.01:

-20

-15

-10

-5

 0

 0.001 0.01 0.1

LP
HP

Magnitude response in dB

-90

-45

 0

 45

 90

 0.001 0.01 0.1

LP
HP

Phase

Second-order allpass filter:

y[t]= (a2∗x)[t]=−d x[t]+ c(1−d)x[t −1]+x[t −2]− c(1−d)y[t −1]+d y[t −2]

Transfer function:

A2(z)= −d + c(1−d)z−1+ z−2

1+ c(1−d)z−1−d z−2

Transfer functions for second-order allpass (A2), band-reject (R) and band-pass (B) filters for fc =
0.2 and fd = 0.15:

A2(ei0)A2(ei2π fc)

A2(ei2π0.1)

R(ei0)R(ei2π fc)

R(ei2π0.1)

B(ei0) B(ei2π fc)

B(ei2π0.1)

Magnitude response = 1:

|A2(z)| = |−d + c(1−d)z−1+ z−2|
|1+ c(1−d)z−1−d z−2| =

|−d + c(1−d)z−1+ z−2|
|z−2| · |−d + c(1−d)z+ z2|

|z|=1===== 1.

Phase −180◦ at ω= fc

2π : A2(z)= A2(eiω)=−1⇒

c =−cosω=−cos2π fc

Parameter d controls the slope:

d = tan(π fd)−1

tan(π fd)+1

Phase response of second-order allpass filter for fc = 0.01 and fd = 0.005:

-360

-270

-180

-90

 0

 0.001 0.01 0.1

Second-order bandpass filter:

y = b∗x = x−a2∗x

2
, B(z)= 1− A2(z)

2

Second-order bandreject filter:

y = r ∗x = x+a2∗x

2
, R(z)= 1+ A2(z)

2

Response of parametric second-order bandpass and bandreject filters with fc = 0.01 and fd =
0.005

-20

-15

-10

-5

 0

 0.001 0.01 0.1

BP
BR

Magnitude response in dB

-90

-45

 0

 45

 90

 0.001 0.01 0.1

BP
BR

Phase

Second-order lowpass filter (K = tanπ fc):

y[t]= (l2∗x)[t]= 1

1+
p

2K +K 2
(K 2x[t]+2K 2x[t −1]+K 2x[t −2]

−2(K 2−1)y[t −1]− (1−
p

2K +K 2)y[t −2])

Second-order highpass filter:

y[t]= (h2∗x)[t]= 1

1+
p

2K +K 2
(x[t]−2x[t −1]+x[t −2]

−2(K 2−1)y[t −1]− (1−
p

2K +K 2)y[t −2])

Shelving filters: add low-/high-pass to original signal.

sl ∗x = x+ (v −1)l ∗x , sh ∗x = x+ (v −1)h∗x ,

v . . . amplitude factor for the passband
Gain in dB V ⇒ v = 10V /20

Magnitude response of low-frequency and high-frequency shelving filters for gain from −20dB to
+20dB and fc = 0.01

-20
-15
-10

-5
 0
 5

 10
 15
 20

 0.001 0.01 0.1

uncorrected cut-frequency

-20
-15
-10

-5
 0
 5

 10
 15
 20

 0.001 0.01 0.1

corrected cut-frequency

Correction to make this symmetrical for v < 1:

c = tan(π fc)− v

tan(π fc)+ v
, c = v tan(π fc)−1

v tan(π fc)+1

for the low-frequency and the high-frequency filter, respectively.

Peak filter:
p ∗x = x+ (v −1)b∗x

Similar correction for v < 1:

d = tan(π fd)− v

tan(π fd)+ v

Magnitude response of peak filters for fc = 0.01:

-20
-15
-10

-5
 0
 5

 10
 15
 20

 0.001 0.01 0.1

varying gain, fd = 0.005

-20
-15
-10

-5
 0
 5

 10
 15
 20

 0.001 0.01 0.1

varying bandwidth fd = 0.0005, 0.001, 0.002, 0.004, 0.008

Equalizer:
e = sl (fcl ,Vl)∗p(fc1, fd1,V1)∗·· ·∗p(fcn , fdn ,Vn)∗ sh(fch ,Vh)

Phaser: set of second-order bandreject filters with independently varying center frequencies
Implemented by a cascade of second-order allpass filters that are mixed with the original signal

ph∗x = (1−m)x+m ·a(n)
2 ∗·· ·∗a(2)

2 ∗a(1)
2 ∗x

Extension: feedback loop

ph3∗x = a(n)
2 ∗·· ·∗a(2)

2 ∗a(1)
2 ∗ph2∗x ,

(ph2∗x)[t]= x[t]+q · (ph3∗x)[t −1] ,

ph∗x = (1−m)x+m ·ph3∗x .

x +
ph2

a2 . . . a2
ph3 ·m + ph

z−1·q ·(1−m)

Wah-Wah effect: set of peak filters with varying center frequencies
Implemented with a single peak filter with m-tap delay (W (z)= P (zm))

Because
|H(ei(−ω))| = |H(z̄)| = |H(z)| = |H(z)| = |H(eiω)| ,

and because eiω = ei(ω±2π) ⇒ map mω to [0,π]
⇒ Frequency mapping f 7→ g (f) so that |P (ei2πm f)| = |P (ei2πg (f))|.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

f 7→ g (f), m = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

time

Peak frequencies, m = 5, controlled by LFO

Constant Q-factor: q = fd

fc
⇒ fd = q fc

Delay effects: m-tap delay, optional mix with direct signal, optional (IIR-)feedback

Example:
vibrato effect: time-shift m varied according to a low-frequency oscillator (LFO) between 0 and
3 ms

Integer m not fine grained enough ⇒ fractional delays

1. linear interpolation

y[t]= (1− f)x[t −bmc]+ f x[t −dme] f =m−bmc

tt −⌈m⌉ t −⌊m⌋
t −m

f

2. correct way: sinc interpolation

x(s)=
∞∑

t=−∞
x[t]sinc(s− t) , sinc(s)= sinπs

πs

3. finite approximation: Lanczos kernel

y[t]=
∑

|r−m|<a
x[t − r]L(r −m) L(s)=

{
sinc(s)sinc(s

a) −a < x < a

0 else

tt −m
t − r

r −m

4. allpass interpolation

y[t]= (1− f)x[t −bmc]+x[t −dme]− (1− f)y[t −1]

5. spline interpolation

Rotary speaker

y[t]= l (1+ sinβt)x[t −a(1− sinβt)]+ r (1− sinβt)x[t −a(1+ sinβt)]

β . . . rotation speed of the speakers
a . . . depth of the pitch modulation
l , r . . . amplitudes of the two speakers
Stereo effect: l and r unequal but symmetrical values for the left and right channel
e.g. yl with l = 0.7,r = 0.5, yr with l = 0.5,r = 0.7.

Comb filter: delayed signal mixed with direct signal
FIR comb filter:

y[t]= (c ∗x)[t]= x[t]+ g x[t −m] , C (z)= 1+ g z−m ,

IIR comb filter:

y[t]= (c ∗x)[t]= x[t]+ g y[t −m] , C (z)= 1

1− g z−m ,

x + y

z−m ·g

FIR comb filter

x + y

z−m·g

IIR comb filter

Magnitude response with m = 5 for g = 0.8 and g =−0.8:

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5

g>0
g<0

FIR comb filter

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5

g>0
g<0

IIR comb filter

Problem: very high gain possible for IIR comb filter. Solution:

• retain L∞-norm (max): multiply output by 1−|g |

• unmodified loudness for broadband signals: retain L2-norm: multiply by
√

1− g 2.

Audio effects with delay filters:

• slapback effect: FIR comb filter with a delay of 10 to 25 ms (1950’s rock’n’roll)

• echo: delays over 50 ms

• flanger effect: delays less than 15 ms, varied by a low-frequency oscillator (LFO)

• chorus effect: mixing several delayed signals with direct signal, delays independently and
randomly varied with LFOs

All effects also possible with IIR comb filters.

Ring modulator: multiplies a carrier signal c[t] and a modulator signal m[t]

Complex signals: if c[t]= eiωc t and m[t]= eiωm t , then

c[t]m[t]= eiωc t eiωm t = ei(ωc+ωm)t

Real signals: mirrored negative frequencies included: cos x = 1
2 (eix +e−ix).

For c[t]= cosωc t and m[t]= cosωm t :

c[t]m[t]= 1

2

(
eiωc t +e−iωc t) 1

2

(
eiωm t +e−iωm t)

= 1

4

(
ei(ωc+ωm)t +e−i(ωc+ωm)t +ei(ωc−ωm)t +e−i(ωc−ωm)t)

= 1

2
(cos(ωc +ωm)t +cos(ωc −ωm)t) .

f0

m

fc− fc

negative freq. of m lower sideband of c ·m
upper sideband of c ·m

Amplitude modulation: reversed roles of c and m ⇒ tremolo effect

y[t]= (1+αm[t])x[t]

Getting rid of lower sideband: Reconstruct imaginary part by 90◦ phase shift filter

cosωt should become

cos
(
ωt − π

2

)
= 1

2

(
ei
(
ωt− π

2

)
+e−i

(
ωt− π

2

))
= 1

2

(−ieiωt + ie−iωt) .

⇒ transfer function of the filter should be

H(eiω)=
{
−i ω> 0

i ω< 0.

=Hilbert filter

Inverse z-transform⇒ impulse response:

h[t]= 1

2π

∫ π

−π
H(eiω)eiωt dω= 1

2π

(∫ 0

−π
ieiωt dω−

∫ π

0
ieiωt dω

)

= 1

2π

(
i
eiωt

it

∣∣∣
0

−π
− i

eiωt

it

∣∣∣
π

0

)
= 1

2πt

{
1+1+1+1 t odd

1−1−1+1 t even

=
{

2
πt t odd

0 t even

−1

−0.5

0.5

1

t

We write x̂ = h∗x.

Analytic version (without negative frequencies) of c and m: c+ iĉ, m+ im̂.⇒

(c+ iĉ)(m+ im̂)= cm− ĉm̂+ i(cm̂+ ĉm)

Real part = single sideband modulated signal: cm− ĉm̂.

Attention: frequency shifts lead to non-harmonic sounds:

ffm 2 fm 3 fm 4 fm 5 fm

harmonic

ffm + fc 2 fm + fc 3 fm + fc 4 fm + fc 5 fm + fc

non-harmonic

fm + fc 2(fm + fc) 3(fm + fc) 4(fm + fc) 5(fm + fc)

harmonic

2 Nonlinear Processing

• Linear processing: y = h∗x

• Nonlinear processing: y = g (x)

– example: y[t]= (x[t])2

– example: y[t]= (x[t])2+x[t −1] · x[t −2]

– example: y = x(l ∗x2), low fc

⇒ slow amplitude manipulation (dynamics processing)

Dynamics processing

First step: amplitude follower comprised of detector and averager

Detector:

• half-wave rectifier: d(x)[t]=max(0, x[t]).

• full-wave rectifier: d(x)[t]= |x[t]|.

• squarer: d(x)[t]= x2[t].

• instantaneous envelope (Hilbert transform) d(x)[t]= x2[t]+ x̂2[t].

t

input

t

half-wave rect.

t

full-wave rect.

t

squarer

t

instant. (Hilbert)

Averager:

y[t]= a(x)[t]= (1− g)x[t]+ g y[t −1] , where g = e−
1
τ

τ . . . attack and release time constant in samples.

Shorter attack than release times:

y[t]= a(x)[t]=
{

(1− ga)x[t]+ ga y[t −1] y[t −1]< x[t]

(1− gr)x[t]+ gr y[t −1] y[t −1]≥ x[t]

Dynamic range control:

y[t]= x[t −τ] ·a2(exp(r (log(a1(d(x))))))[t]

Levels and factors in dB, maximum level is 0 dB:

-90
-80
-70
-60
-50
-40
-30
-20
-10

 0

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

noise gate
expander

compressor
limiter

Output level over input level

-90
-80
-70
-60
-50
-40
-30
-20
-10

 0

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

Gain factor r over input level

d a1 log r exp a2

z−τ ×

Operator chain for dynamics processing

x, a1(d (x))

log(a1(. . .))

r (log(. . .))

a2(exp(r (. . .)))

x[t −τ] ·a2(. . .)

Compressor/limiter

• compressor reduces the amplitude of loud signals

• expander does the opposite

• noise gate entirely eliminates signals below a threshold

• limiter reduces peaks in the audio signal (rectifier as detector)

• infinite limiter or clipper: limiter with zero attack and release times: y[t]= g (x[t])

Typical values: τ1,a = 5ms, τ1,r = 130ms, τ2,a = 1. . .100ms, τ2,r = 20. . .5000ms.

y[t]= g (x[t])

Taylor expansion: g (x)= a0+a1x+a2x2+a3x3+ . . .

Impact on frequency spectrum of a single oscillation:

cosn(ωt +ϕ)= 1

2n

n∑
k=0

(
n

k

)
cos((n−2k)(ωt +ϕ))

⇒ new frequencies ω,2ω,3ω, . . .

Total harmonic distortion:

THD=

√√√√ A2
2+ A2

3+ A2
4+ . . .

A2
1+ A2

2+ A2
3+ . . .

,

Ak . . . amplitude of frequency kω

More than one frequency in the input signal:

(cosω1t +cosω2t)n =
n∑

k=0

(
n

k

)
cosk ω1t cosn−k ω2t

New frequencies: aω1+bω2 for integers a and b

Soft clipping:

g (x)= sign(x) ·





2|x| 0≤ |x| ≤ 1
3

3−(2−3|x|)2

3
1
3 ≤ |x| ≤ 2

3

1 2
3 ≤ |x| ≤ 1.

Distortion:
g (x)= sign(x)(1−e−a|x|) a . . . amount of distortion

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

distortion
soft clip

overdrive . . . small amount of distortion (“warmer” sound)
distortion . . . clearly audible distortion
fuzz . . . heavy distortion (mutual interaction between several notes results in noise)
exciter . . . light distortion to increase harmonics of a sound (brighter and clearer sound)
enhancer . . . like exciter, also uses equalization to shape the harmonic content

Octaver:
Full-wave rectifier g (x)= |x| sine-wave with wave-length τ into a τ

2 -periodic signal
⇒ upwards octave shift
Downwards octave shift:

t

input

τ

t

var. 1

2τ

t

var. 2

2τ

Problem: Distortion⇒ bandwidth extension (xn⇒ nω)⇒ aliasing

Solution 1: upsample signal by n using interpolation⇒ new frequencies from distortion are be-
low the new Nyquist-frequency, afterwards down-sampling (with low-pass filtering)

Solution 2: split g (x) into a1x+a2x2+a3x3+ . . ., split x into n channels, each low-pass filtered by

lk with a cutoff frequency of fs

2k

y[t]= a1x+a2(l2∗x)2+a3(l3∗x)3+ . . .

ffs/2 fs

x x2 x3bandwidth extension

ffs/2 fs

aliasing problem

ffs/2

upsampling method

ffs/2 fsfs
2·2

fs
2·3

low-pass method

3 Time-Frequency Processing

Sinusoidal+residual model:
x[t]=

∑
k

ak [t]cos(ϕk [t])+e[t] .

ak [t] . . . amplitude of the k-th sinusoid
e[t] . . . residual signal
ϕk [t] . . . instantaneous phase of the k-th, which cumulates the instantaneous frequency ωk [t]:

ϕk [t]=
t∑

s=0
ωk [s] .

3.1 Phase Vocoder Techniques

Short-time Fourier transform (STFT):

x

t

r

n
w

t

X ...

n . . . window or frame size
small window⇔ bad frequency resolution
large window⇔ bad time resolution and higher latency

r . . . hop size (distance between the centers of consecutive windows)

overlap: 1− r /n

Windowing (h[t]):
x

t

x

t
lo

g
|X

|

w

lo
g
|X

|

w

STFT:

X [t , w]=
n/2−1∑

s=−n/2
h[s]x[r t + s]e−i2πw s/n

w . . . frequency bands/bins (integer, as opposed to ω)
t . . . coarser time-resolution (t +1 means time shift of r)
X [t , w]= |X [t , w]|eiϕ[t ,w] . . . amplitude |X [t , w]|, phase ϕ[t , w]

Re-synthesis (inverse Fourier-transform, overlap-add method):

x[t]=
∑

s:− n
2≤t−r s< n

2

hs[t − r s]
∑
w

X [s, w]ei2πw(t−r s)

hs . . . synthesis window:
reverses analysis window h
in overlap regions the sum of the resulting windows has to be 1 (summing condition):

∑
s

h[t − r s]hs[t − r s]= 1

Example: Hann window
h[t]= A

2 (1+cos2πt/n), hop size r = n/4
hs = h ⇒ ∑

s(h[t − r s])2 = 1

h2[t]+h2[t −n/4]+h2[t −n/2]+h2[t −3n/4]

= A2

4
(1+cos2πt/n)2+ A2

4
(1+cos2π(t/n−1/2))2+ . . .+ A2

4
(1+cos2π(t/n−3/4))2

= A2

4
(1+cos)2+ A2

4
(1− sin)2+ A2

4
(1−cos)2+ A2

4
(1+ sin)2

= A2

4
(1+2cos+cos2+1−2sin+sin2+1−2cos+cos2+1+2sin+sin2)

= A2

4
(4+2(cos2+sin2))= 3A2

2
A=
p

2/3======= 1

Phase vocoder = STFT + modifications + inverse STFT

Time stretching: use a different hop size rs for synthesis
Problem: phases do not match
Solution: phase unwrapping:
ϕ[t , w] . . . instantaneous phase of X [t , w], so that

X [t , w]= A[t , w]eiϕ[t ,w]

If frequency would be exactly w , then the projected phase of X [t +1, w] is

ϕp [t +1, w]=ϕ[t , w]+2πwr /n
mod 2π= ϕ[t +1, w]

Otherwise: unwrapped phase ϕu[t +1, w]:

ϕu[t +1, w]=ϕ[t +1, w] mod 2π , −π≤ϕu[t +1, w]−ϕp [t +1, w]≤π

This can be achieved by

ϕu[t +1, w]=ϕ[t +1, w]+ round((ϕp [t +1, w]−ϕ[t +1, w])/2π) ·2π

Total phase rotation between t and t +1 in frequency bin w :

∆ϕ[t +1, w]=ϕu[t +1, w]−ϕ[t , w]

t

ϕ[t , w]

t

ϕ[t +1, w]=ϕ[t , w]+∆ϕ mod 2π

t

ϕ[t , w]+ rs
r ∆ϕ

ϕ

tr (t +1)r

ϕ[t , w]

ϕp

ϕ[t +1, w]

2π

2π

ϕu

∆ϕ

ϕ

trs (t +1)rs

ψ[t , w]

ψ[t +1, w]

rs
r ∆ϕ

Time stretching, finally:

Y [t , w]=
n/2−1∑

s=−n/2
h[s]y[rs t + s]e−i2πw s/n = A[t , w]eiψ[t ,w]

ψ[t +1, w]=ψ[t , w]+ rs

r
∆ϕ[t +1, w]

Pitch shifting by time stretching (rs =αr): resampling after time stretching y[t]= x[αt]

Problem: Frequency transients and consonants are smeared in time.
Solution: Separate stable from transient components (stable = unchanging phase change):

ϕ[t , w]−ϕ[t −1, w]≈ϕ[t −1, w]−ϕ[t −2, w] mod 2π

More precisely:
|ϕ[t , w]−2ϕ[t −1, w]+ϕ[t −2, w]| < d mod 2π

where “|x| < d mod 2π” means: the smallest |x+k ·2π| is smaller than d .

Stable frequency bins: time stretching
Transient bins: drop or use to construct residual signal
Or: do not stretch parts without stable bins

Mutation (morphing, cross-synthesis, vocoder effect): Use phase of X1 and magnitude of X2:

Y [t , w]= X1[t , w]

|X1[t , w]| |X2[t , w]|

Robotization: Set all phases to zero in each frame and each bin.

Whisperization: randomize the phase

Denoising: attenuate frequency bins with low magnitude, keep high magnitudes unchanged.

Y [t , w]= X [t , w]
|X [t , w]|

|X [t , w]|+ cw

cw . . . controls amount and level of attenuation.

3.2 Peak Based Techniques

• Phase vocoder: represent frequency by frequency bin and phase (bin-number only exact up
to fs/N)

• Peak based: represent frequency by exact peak

Peak detection: fit a parabola to the maximum and the two neighboring bins (in logarithmic
representation of the magnitudes)
aw = 10log10 |X [t , w0+w]|22 (w0 . . . bin of local maximum)
Parabola p(w)=αw2+βw +γ so that p(w)= aw for w ∈ {−1,0,1}
⇒ α−β+γ= a−1, γ= a0, α+β+γ= a1

⇒ α= 1
2 (a1−2a0+a−1), β= 1

2 (a1−a−1)
Peak of p(w) where p ′(w)= 0 ⇒ 2αw +β= 0 ⇒

w =− β

2α
= a−1−a1

2(a−1−2a0+a1)
.

|X
|[d

B
]

w

Pitch detection: find the fundamental frequency (integer multiples: harmonics/partials)

Heuristics: Each peak casts a (weighted) vote to itself and its integer fractions:

|X
|[d

B
]

f

votes
most

Peak continuation: associate corresponding peaks of subsequent frames
Simple way: choose peak that is closest in frequency (may be wrong in case of transients)
Better way: “guides” – updated to match peaks and fundamental frequency – can be created,
killed, turned on/off temporarily

f

t

Convert tracks representation back to sound (synthesis):

• oscillator

• inverse Fourier transform

Oscillator (analog, differential equation):

x ′′(t)=−ax(t)

Discretization:
x ′′(t)≈ x[t +1]−2x[t]+x[t −1]

⇒ (digital resonator):

x[t +1]= (2−a)x[t]−x[t −1]=: (r ∗x)[t +1]

Transfer function:

R(z)= 1

1− (2−a)z−1+ z−2

Pole of R(z) is resonance frequency (denominator = 0):

(2−a)z−1 = 1+ z−2

(2−a)= z+ z−1 = 2cosω

Initialize by calculating x[0] and x[1] directly

z−1 ·2cosω −

z−1

−

Problem: changes in oscillation energy during frequency changes:

E [t]= ax[t]x[t −1]+ (x[t]−x[t −1])2

E [t +1]= ax[t +1]x[t]+ (x[t +1]−x[t])2

= a((2−a)x[t]−x[t −1])x[t]+ ((2−a)x[t]−x[t −1]−x[t])2

= a(2−a)x[t]2−ax[t]x[t −1]+ (x[t]−x[t −1]−ax[t])2

= a(2−a)x[t]2−ax[t]x[t −1]+ (x[t]−x[t −1])2−2ax[t](x[t]−x[t −1])+a2x[t]2

= a(2−a)x[t]2−ax[t]x[t −1]+ (x[t]−x[t −1])2−a(2−a)x[t]2+2ax[t]x[t −1]

= ax[t]x[t −1]+ (x[t]−x[t −1])2 = E [t] .

Frequency change (a 7→ a2):

• at signal maximum: E [t]≈ ax[t]x[t−1]≈ ax[t]2⇒ changed energy (·a2/a), same amplitude

• at zero crossing: E [t]≈ (x[t]−x[t −1])2⇒ same energy, changed amplitude

This has to be compensated or, better, the signal has to be initialized again.

Synthesis by inverse Fourier transform: add spectral pattern of sinusoid to frequency bins
Determine coefficients by forward transform of pure sine wave. Redundancies:

• amplitudes adjusted by multiplying coefficients (consider only normed amplitude)

• phase adjusted by multiplication with eiϕ (consider only normed phase)

• all coefficients have same phase (ignore phases)

• coefficients for two frequencies with an integer bin-distance are the same, just shifted by a
certain number of bins (consider only frequencies between bin 0 and 1)

• coefficients far from the center frequency are negligibly small (consider only small number
of bins)

C f [w]=
n/2−1∑

s=−n/2
h[s]ei2π f se−i2πw s/n =

n/2−1∑
s=−n/2

h[s]e−i2π(w−n f)s/n ,

w =−b, . . . ,b, b . . . approximation bandwidth, n f ∈ [0,1), or better n f ∈ [−0.5,0.5)
Combine w and f into v =w −n f ⇒ zero-padded Fourier transform of window h[s]

C (v)=
n/2−1∑

s=−n/2
h[s]e−i2πv s/n

0

0.5

C
(v

)
−4 −3 −2 −1 0 1 2 3 4

v

0 1 2 3 4 5 6 7 8 9
w

t0

IFFT

Spectral motif C (v) for Hann window, used for IFFT synthesis (n f = 5.3, ϕ=π/4)

Copy/add AC (w −n f)eiϕ into bin w .

Performance comparison:

• one sinusoid:

– Resonator: O(1) operations per sample

– inverse FFT: O(n logn) per frame ⇒ O(logn)/(1−overlap) per sample

• k sinusoids:

– Resonator: O(k)

– inverse FFT: O(bk/n)+O(logn)/(1−overlap)

Problem with overlap-add IFFT synthesis: change in frequency⇒ interferences in overlaps
Possible solution: no overlap:

• inverse window hs[s]= h[s]−1

• truncate border (approximation errors mostly near border)

• phases must be exact (avoid phase jumps at border)

Residual signal: subtract re-synthesized signal from the original signal

• in time domain: shorter frames (time resolution more important)

• in frequency domain: no additional FFT needed

Residual signal: stochastic signal (only spectral shape important, no phase information)
Curve fitting on the magnitude spectrum (straight-line segment approximation):

lo
g
|X

|

10−2 10−1

f

lo
g
|X

|

10−2 10−1

f

Synthesis of the residual signal:

• convolution of white noise with impulse response of the magnitude spectrum, or

• fill each frequency bin with a complex value: magnitude from the measured magnitude
spectrum, random phase.

Applications of peak based methods

• filter with arbitrary resolution

• Pitch shifting, timbre preservation

lo
g
|X

|
f

lo
g
|X

|

f

lo
g
|X

|

f

• Spectral shape shift

• Time stretching (same hop-size but repeat/drop frames)
avoid smoothing of attack transients: analysis and synthesis frame rates can be set equal
for a short time.

• Pitch correction (Auto-Tune):

– detect pitch

– quantify towards nearest of the 12 semitones

– sinusoids pitch-scaled by the same factor

• Gender change: pitch scaling, move spectral shape along with the pitch for female voice

• Hoarseness: increase magnitude of the residual signal

3.3 Linear Predictive Coding

Linear predictive coding (LPC):
Prediction filter p: x[t]≈ (p ∗x)[t]
Residual e[t]= x[t]− (p ∗x)[t]

(p ∗x)[t]= p[1]x[t −1]+p[2]x[t −2]+ . . .+p[m]x[t −m]

Re-synthesize: x[t]= (p ∗x)[t]+e[t]

If residual e[t] not known exactly (ẽ[t]):

y[t]= (p ∗ y)[t]+ ẽ[t]

(all-pole IIR filter)

How to find optimum filter coefficients p[k]?
Minimize:

E :=
∑

t
e2[t]=

∑
t

(x[t]−p[1]x[t −1]−p[2]x[t −2]− . . .−p[m]x[t −m])2

Deriving this with respect to all p[k], setting zero:

0= dE

dp[k]
=
∑

t
2e[t]

de[t]

dp[k]
= 2
∑

t
e[t]x[t −k]= 2

∑
t

(
x[t]−

∑
j

p[j]x[t − j]

)
x[t −k]

⇔
∑

j
p[j]

∑
t

x[t − j]x[t −k]=
∑

t
x[t]x[t −k]

Involves the autocorrelation of x. More stable with windowing:

rxx [s] :=
∑

t
w[t]x[t]w[t − s]x[t − s]

⇒ ∑
j

p[j]rxx [k− j]= rxx [k] ,

⇒ equation system with Toeplitz matrix (constant diagonals Mk,k−i = rxx [k− (k− i)]= rxx [i])

Levinson-Durbin recursion:
T (n) . . . upper left n×n-sub-matrix of Mk, j = rxx [k− j]
p(n) . . . solution vector of T (n)p(n) = y (n) where y (n) = rxx [1 . . .n]

T (n+1)
(

p(n)

0

)
=
(

y (n)

ε

)
(1)

ε should be rxx [n+1]
Help vector b(n) which satisfies T (n)b(n) = (0, . . . ,0,1)

T (n+1)p(n+1) = T (n+1)
((

p(n)

0

)
+ (rxx [n+1]−ε)b(n+1)

)
= y (n+1) (2)

Find b(n): find also f (n) satisfying T (n) f (n) = (1,0, . . . ,0)

T (n+1)
(

f (n)

0

)
=




1
0
...
ε f




, T (n+1)
(

0
b(n)

)
=




εb

0
...
1




(3)

Find α and β so that

T (n+1) f (n+1) = T (n+1)
(
α

(
f (n)

0

)
+β
(

0
b(n)

))
=α




1
0
...
ε f



+β




εb

0
...
1



=




1
0
...


 , (4)

which can be found by solving

α+βεb = 1, αε f +β= 0 ⇒ α= 1

1−εbε f
, β=−ε f α (5)

Same for b(n+1).
For symmetric Toeplitz matrices: b is just f reversed, and ε f = εb .

⇒ Recursion from n+1= 1 to m (length of filter p)
Complexity: O(m2) (normal equation solving: O(m3))

Example.
x = (1,2,1,−1,−2,−1)

rxx [0]= 12+22+ . . . ,rxx [1]= 1 ·2+2 ·1+ . . . , rxx = (12,7,−2,−6,−4,−1)

To solve for m = 3: 


12 7 −2
7 12 7
−2 7 12






p[1]
p[2]
p[3]


=




7
−2
−6




Iteration n = 0
p(1) = (7/12)=

(7
12

)
, f (1) = b(1) = (1

12

)

Iteration n = 1

ε f = εb =
1

12
·7= 7

12
⇐ (3)

α= 1

1− 7
12 · 7

12

= 144

95
, β=− 7

12
· 144

95
=−84

95
⇐ (5)

f (2) = 144

95

(1
12
0

)
+
(
−84

95

)(
0
1

12

)
=
(12

95
− 7

95

)
, b(2) =

(− 7
95

12
95

)
⇐ (4)

ε= 7

12
·7= 49

12
⇐ (1)

p(2) =
(7

12
0

)
+
(
−2− 49

12

)(− 7
95

12
95

)
=
(98

95
−73

95

)
⇐ (2)

x[t], (p(2)∗x)[t]:

Iteration n = 2

ε f = εb =
12

95
· (−2)+

(
− 7

95

)
·7=−73

95
⇐ (3)

α= 1

1− (−73
95

) · (−73
95

) = 9025

3696
, β=−

(
−73

95

)
· 9025

3696
= 6935

3696
⇐ (5)

f (3) = 9025

3696




12
95
− 7

95
0


+ 6935

3696




0
− 7

95
12
95


=




95
308
− 7

22
73

308


 , b(3) =




73
308
− 7

22
95

308


 ⇐ (4)

ε= 98

95
· (−2)+

(
−73

95

)
·7=

(
−707

95

)
⇐ (1)

p(3) =



98
95
−73

95
0


+
(
−6−

(
−707

95

))


73
308
− 7

22
95

308


=




423
308
−27

22
137
308


 ⇐ (2)

x[t], (p(3)∗x)[t]:

Two possibilities to apply the predictor p:

• FIR filter p ∗x

• recursive IIR filter p(r)∗x:

y[t]= (p(r)∗x)[t] := x[t]+ (p ∗ y)[t]= x[t]+p1 y[t −1]+ . . .+pm y[t −m]

x . . . “excitation” of p(r)

Excited with the prediction residual ⇒ original signal is reconstructed:

y = p(r)∗ (x−p ∗x)= x−p ∗x+p ∗ y ⇒ y −p ∗ y = x−p ∗x ⇒ y = x

x

t

m = 10

lo
g
|X

|

f

x

t

x

x −p ∗x

p(r) ∗δ

m = 100

lo
g
|X

|

f

Residual is “whitened” (peaks at same level)
Predictor represents spectral shape (p(r)∗δ)

Sound mutation:
y = p(r)

2 ∗ (x1−p1∗x1) .

LPC-method widely used in speech analysis, synthesis and compression.

3.4 Cepstrum

Cepstrum (anagram of spectrum): smoothing of the magnitude spectrum by a Fourier method
real cepstrum:

c[t , s] := 1

n

n/2−1∑
w=−n/2

log |X [t , w]|ei2πw s/n

s . . . “quefrency”

Low-pass filtering in the s-domain:

l [s]=
{

1 −sc ≤ s < sc

0 else,

sc . . . cutoff quefrency

Forward Fourier transform⇒ smoothed spectrum in the logarithmic domain (dB):

Cl [t , w]=
n/2−1∑

s=−n/2
c[t , s]l [s]e−i2πw s/n

x

t

|X |

f

lo
g
|X

|

f

c

s

High-pass window h[s]= 1− l [s] ⇒ complementary source envelope

log |X [t , w]| =Cl [t , w]+Ch[t , w]

X [t , w]= exp(Cl [t , w])exp(Ch[t , w])eiϕ[t ,w]

Source-filter separation:

• exp(Cl [t , w]) . . . filter or spectral envelope

• exp(Ch[t , w])eiϕ[t ,w] . . . source signal

Sound mutation (again):

Y [t , w]= exp(C (1)
l [t , w])exp(C (2)

h [t , w])eiϕ(2)[t ,w]

= X (2)[t , w]exp(−C (2)
l [t , w])exp(C (1)

l [t , w])

Formant changing:

Y [t , w]= X [t , w]exp(−Cl [t , w])exp(Cl [t , w/k])

= X [t , w]exp(Cl [t , w/k]−Cl [t , w])

k . . . scale factor.
Similar: pitch shifting with timbre preservation

Pitch detection by cepstrum:
Regular intervals of harmonics⇒ peak at period of fundamental frequency in s-domain
Also peaks for integer multiples⇒ choose leftmost peak

4 Time-Domain Methods

Time stretching in the time domain: shifting overlapping short segments
Overlapping segments:

xk [t]= x[kr + t] for t = 0, . . . ,n−1

k . . . index of the segment
r . . . hop-size
n . . . segment length
Change hop-size to r ′ ⇒ phase mismatches ⇒ amplitude fluctuations
Solution: adjust by additional shift sk :

y[t]=
∑
k

xk [t −kr ′− sk]wk [t −kr ′− sk]

wk . . . fade-in/fade-out window
Best fitting shifts sk by cross-correlation:

c[s]=
∑

t
xk−1[t + r ′− sk−1]xk [t − s] sk = argmax

s
c[s]

. . . SOLA (synchronous overlap-add)
More extreme scaling: repeat/omit segments (source segment k(l) for destination segment l)

xk−1
xkr

x

xk−1

xkr ′
t − r ′k

t − r ′(k −1)

t

y

xk−1

xkr ′− sk−1+ sk t − r ′k − sk

t − r ′(k −1)− sk−1

t

y

If pitch is known: PSOLA (pitch-synchronous overlap-add)
r ′− r + sk − sk−1 must be a multiple of the pitch period τ:

sk = round

(
r ′− r − sk−1

τ

)
τ− (r ′− r)+ sk−1

Pitch detection by auto-correlation:
rxx [s]: peak at a lag of s = T0/Ts

T0 . . . period of the signal (T0 = 1/ f0)
Ts . . . sampling interval (Ts = 1/ fs)
⇒ s = fs/ f0.

x

t

rxx

s

T0/Ts

partial amplitudes (0.4,0.8,0.4,0.6,0.1,0.2,0.1)⇒ false peak at 0.5 ·T0/Ts (strong even partials)

Problems:
– lag is integer⇒ detected fundamental frequencies must not be too high
– fundamental frequency is not the only peak:

– integer multiples (Ts-periodic⇒ also kTs-periodic)
– integer fractions (harmonics have smaller periods)

5 Spatial Effects

5.1 Sound Field Methods

Panorama:

gL
gR

θl

θ

apparent source

Apparent source direction

p := tanθ

tanθl
= gL − gR

gL + gR

Linear interpolation (linear panning): “hole” in the center

Reason:
√

E(g x)=
√

g 2E(x)= g
p

E(x), but

√
E(gL x)+E(gR x)=

√
g 2

LE(x)+ g 2
R E(x)=

√
g 2

L + g 2
R

√
E(x)

Better:

gL =
1+p√

2(1+p2)
, gR =

1−p√
2(1+p2)

⇒ “overall gain”
√

g 2
L + g 2

R = 1

True for broadband signals and low frequencies
Higher frequencies: different panning

0

1

p1 0 −1

gL gR

√
g 2

L + g 2
R

0

1

p1 0 −1

gL gR

√
g 2

L + g 2
R

Precedence effect: short delay of up to 1 ms between speakers
⇒ sound appears nearer to speaker that emits sound first
effect strongly depends on the type of sound being played and the frequency

Inter-aural differences (in headphones):

• Inter-aural intensity difference (IID)
basically a panorama effect
depends on the frequency (less diffraction of higher frequencies⇒more head shadow)

• Inter-aural time difference (ITD)
time delay between the two channels
depends on the frequency (below 1 kHz difference is greater, constant otherwise)

IID and ITD both depend on angle of the sound source

shoulder echoes

pinna reflections

ITD

head shadow (IID)
(frequency dependent)

IID + ITD + shoulder echoes + pinna reflections: head related transfer function (HRTF)
measured by artificial dummy heads at different angles
approximated by IIR filters of an order of about 10

or: approximate head by a sphere:
– calculate the IID as a first-order IIR filter
– ITD implemented by delay
– shoulder echoes by single echo (angle-dependent delay)
– pinna reflections: short series of short-time echoes (very short angle-dependent delays)

correlated

decorrelated

headphones loudspeakers

Correlation coefficient:

r (τ)=
∫

xL(t)xR (t +τ)dt√∫
x2

L(t)dt
∫

x2
R (t)dt

Sound externalization: push apparent sound source out of head
Method: decorrelation: complex reverberation or convolution with uncorrelated white noise

Traveling and standing waves:

right traveling wave

left traveling wave

standing wave (sum)

directional difference

t1 t2 t3

x1 x2 x1 x2 x1 x2

Animation

https://www.cosy.sbg.ac.at/~rkutil/audio/wavesani.gif

Capture 3D audio: sound field recording
Simple: place microphones and loudspeakers in same directions

Better: Ambisonics
– non-directional sound pressure component W
– three directional components X , Y , and Z

x
−~u −~u

−~u

−~u
−~u

W = front+back+ left+ right+up+down

X = front−back

Y = left− right

Z = up−down

(W, X ,Y , Z)= (
p

2/2,~u) · x

Loudspeaker at direction ~u:
1

2
(G1W +G2(X ,Y , Z)T~u)

G1, G2 depend on the theory (there are several), frequency-dependent (filters)

Disadvantage: “sweet spots”
⇒Higher-order versions of Ambisonics (higher derivatives)⇒wider sweet spots

If elevation component is not needed⇒ ignore Z channel

5.2 Reverberation

Apparent distance of sound from the listener, room size:
– direct sound
– reflections from walls
– ratio of direct to reverberating sound

– direct sound loses energy with distance
– reverberating sound fills room continuously

Direct sound delay Td , reflection delay Tr ⇒ cue for position

Problem: additional reverberation in room of listener
Robust method: room-within-a-room model.

– virtual holes in wall at loudspeaker positions
– delay according to the path length l from source to hole (delay = l/c, c . . . speed of sound)
– paths may include reflections of the outer room
– gain set to 1/l (l in meters) (reason: spherical sound waves)
– gain limited to 1 to avoid infinite (or too high) gains
– attenuate if sound direction is opposite to speaker direction

Problem: sound path calculation for multiple reflections computationally demanding
However: sound waves become increasingly planar and aligned with room geometry

Normal modes: standing waves in room

For room of size (lx , ly , lz):
mode number vector (nx ,ny ,nz) (ni = 0,1, . . .) corresponding to wave length

λn = 2

((
nx

lx

)2

+
(

ny

ly

)2

+
(

nz

lz

)2)− 1
2

Impulse response of room: resonances at frequencies fn = c/λn

For irreducible triplets n: fundamental frequency + multiples⇒ harmonic frequencies
⇒ implemented by comb filters

n =
(1,0,0)

(0,1,0)

(1,1,0)

(2,1,0)

(2,3,0)

α
α

lx/nx

ly /ny

λn/2

λn /2
ly /ny

= lx /nxp
(ly /ny)2+(lx /nx)2

⇒ λn = 2 1p
(nx /lx)2+(ny /ly)2

Animations:
(1,0,0)
(0,1,0)
(1,1,0)
(2,1,0)
(2,3,0)

https://www.cosy.sbg.ac.at/~rkutil/audio/roommodesani10.gif
https://www.cosy.sbg.ac.at/~rkutil/audio/roommodesani01.gif
https://www.cosy.sbg.ac.at/~rkutil/audio/roommodesani11.gif
https://www.cosy.sbg.ac.at/~rkutil/audio/roommodesani21.gif
https://www.cosy.sbg.ac.at/~rkutil/audio/roommodesani23.gif

Reverberation without “coloration” (flat magnitude response): delay-based all-pass filter:

y[t]= (a∗x)= cx[t]+x[t −m]− c y[t −m]

Combination of techniques: Moorer’s reverberator.

x z−l1 ·a1 +

z−ln ·an

...

y1

early reflections

+
l·g1z−m1

...+
l·goz−mo

late reflections

+ a z−ln−k +
y2

y3

Early reflections (delays li based on the
sound trajectories):

y1[t]= x[t]+a1x[t − l1]+ . . .+an x[t − ln]

IIR comb filters with a low-pass filter in the
loop:

y[t]= (c ∗x)[t]= x[t]+ g (l ∗ y)[t −m]

applied in parallel for late reflections:

y2[t]= c1∗ y1+ c2∗ y1+ . . .+ co ∗ y1

(mi are based on wavelengths of room
modes, low-pass filter simulates the behav-
ior of the walls)
fed into all-pass filter, delayed and mixed
together:

y3[t]= y1[t]+ (a∗ y2)[t − ln −k]

Generalization of recursive comb filter y[t]= x[t]+ g · y[t −m]: feedback delay network (FDN)
g substituted by a matrix G :

~y[t]= x[t − ~m]~b+G~y[t − ~m] and y[t]= d x[t]+~cT~y[t]

(~y[t − ~m] means: each component of ~y is delayed by a different delay mi)

x ·b1 + z−m1
y1 ·c1 + y

·bn

...

+ z−mn

...
yn ·cn

...

·G
...

...

·d

If G is a diagonal matrix⇒ set of parallel comb filters as in Moorer’s reverberator
Non-diagonal elements of G : interaction between the room’s normal modes (due to diffusive ele-
ments)

Taking the z-transform:
~Y (z)= diag

(
z−~m

)(
~bX (z)+G~Y (z)

)
,

(
diag

(
z ~m
)
−G
)
~Y (z)=~bX (z) ,

H(z)= Y (z)

X (z)
= d +~cT

(
diag

(
z ~m
)
−G
)−1

~b

Poles: det(diag(z ~m)−G)= 0
– should be inside unit circle to achieve a stable system)
– should have same absolute value (modes will decay at the same rate⇒ no “coloration”)
– first lossless prototype (poles on unit circle, e.g. G unitary matrix)
– attenuation coefficients αmi in feedback loops
– make higher frequencies decay faster (attenuation coefficients now lowpass filters)
– Feedback matrices of special form (fast implementation, e.g. circular Toeplitz matrices⇒Fourier
methods)

5.3 Convolution Methods

Real room reverberation: convolve the input signal with room impulse response

How to determine room impulse response?
Simple: emit impulse (at source position), record result (at listener position)
Problem: large signal peak, little sound energy

Crest factor:

C = peak |x|
RMS(x)

Solution: maximum length sequences (MLS) (pseudo-random binary (bit) sequences, generated
by linear feedback shift registers)

Example (shift register of size 4 (a3, a2, a1, a0):

a3[t]= a0[t −1] XOR a1[t −1] , ak [t]= ak+1[t −1] for k = 0,1,2 .

z−1
a3

z−1
a2

z−1
a1

z−1
a0

XOR

·2−1

For initial values 0001 for a, the result is

a0[t]= 100010011010111100010011010111100010011010111 . . .

Properties of MLS:

• shift register size m ⇒ sequence length 2m −1

• half of the runs: length 1, quarter: length 2, eighth: length 3, . . .

• ≈ half of bits are 1

• 0 substituted by −1 ⇒ crest factor 1 (=minimum)

• correlation property: auto-correlation ≈ impulses at intervals of 2m −1

(a ?a)[k]=
2m−2∑
t=0

a[t]a[t −k]≈
{

2m −1 k = 0 mod 2m −1

0 else

So, a ?a∝ δ (apart from the repetition).

Extract room impulse response h from MLS response y = h∗a:

y ?a = h∗a ?a = h∗δ= h

Problem: direct convolution of impulse response with input signal computationally costly
Solution: convolution theorem (used on blocks):

FFT−1 (FFT(x[0], . . . , x[n−1])¯FFT(h[0], . . . ,h[m−1], . . . ,0︸ ︷︷ ︸
length n

)
)

= (x[0]h[0]+x[n−1]h[1]+x[n−2]h[2]+ . . . , . . .)

¯ . . . pointwise multiplication

Problem: result is circular convolution

Solution: Zero-padding to length n+m−1:

FFT−1 (FFT(x[0], . . . , x[n−1], . . . ,0︸ ︷︷ ︸
length n+m−1

)¯FFT(h[0], . . . ,h[m−1], . . . ,0︸ ︷︷ ︸
length n+m−1

)
)

= (x[0]h[0], x[1]h[0]+x[0]h[1], . . . , x[n−1]h[0]+ . . .+x[n−m+1]h[m−1],

x[n−1]h[1]+ . . .+x[n−m]h[m−1], . . . , x[n−1]h[m−1]) .

The result has to be overlap-added:

x[0]h[0]
x[1]h[0]+x[0]h[1]
...
x[n−1]h[0]+ . . .+x[n−m+1]h[m−1]
x[n−1]h[1]+ . . .+x[n−m]h[m−1] +x[n]h[0]
...

...
x[n−1]h[m−1] +x[n+m−2]h[0]+ . . .+x[n]h[m−2]

...
+x[2n−1]h[m−1] ,

left column: h∗x[0, . . . ,n−1], right column: h∗x[n, . . . ,2n−1].

Another possibility: input blocks of size n+m−1 overlap, discard m−1 samples of the result

FFT−1 (FFT(x[−m+1], . . . , x[n−1])¯FFT(h[0], . . . ,h[m−1], . . . ,0︸ ︷︷ ︸
length n+m−1

)
)

= (x[−m+1]h[0]+x[n−1]h[1]+ . . ., . . ., x[−1]h[0]+ . . .+x[n−1]h[m−1],

x[0]h[0]+ . . .+x[−m+1]h[m−1], . . . , x[n−1]h[0]+ . . .+x[n−m]h[m−1]) .

h

x (block)

x ∗h (block)

x ∗h (sum)

zero padding

output overlap

h

x (block)

x ∗h (block)

x ∗h

data padding

input overlap

Problem: latency introduced by the block size
Solution: split the impulse response h into blocks h1,h2,h3, . . . (increasing power-of-two sizes)

h h1 h2 h3

animation

https://www.cosy.sbg.ac.at/~rkutil/audio/blockconv3ani.gif

Overlap of input and output of the size of h1 ⇒ introduce some latency

in
p

u
t

o
u

tp
u

t

h1

h2

h3

h h1 h2 h3

ignoring computation time
animation

https://www.cosy.sbg.ac.at/~rkutil/audio/blockconv4aani.gif

Practically: block computation time ≈ block time

in
p

u
t

o
u

tp
u

t

h1h2

h3h4

h5h6

h h1h2 h3 h4 h5 h6

considering computation time
animation

Zero-latency: prepend block h0 (1× or 2× size of h1), direct convolution

In reality, I/O is blocked anyway, though.

https://www.cosy.sbg.ac.at/~rkutil/audio/blockconv4bani.gif

6 Audio Coding

6.1 Lossless Audio Coding

Simplest approach: silence compression:
– runs of zero values: runlength-coding
– almost silent parts set to zero (actually lossy)

Better: linear prediction (linear predictive coding):
– optimized filter (Levinson-Durbin recursion) predicts samples
– encode prediction error

Prediction error has two-sided geometric distribution:

pk = P (x[t]− (p ∗x)[t]= k)∝ s−|k|

Efficiently encoded with Rice codes, or Golomb-Rice codes:
– parameter M (∝ variance of the distribution), power of two
– divide k by M ⇒ quotient q , remainder r :

k =M q+ r

– q encoded as unary code (q ones followed by a zero)
– r encoded as log2(M) bits

Example (M = 4):
k code k code k code k code
0 000 4 1000 8 11000 12 111000
1 001 5 1001 9 11001 13 111001
2 010 6 1010 10 11010 14 111010
3 011 7 1011 11 11011 15 111011

Only suitable for positive k
Signed k: k 7→ 2k for k ≥ 0, k 7→ 2|k|−1 for k < 0

Example: two-sided geometric distribution pk = 1
6 ·1.4−|k|

Self-information − log2(pk) compared to the codelengths for M = 4:

0

0.1

0.2pk

−10 −8 −6 −4 −2 0 2 4 6 8 10
k

0
2
4
6
8

−10 −8 −6 −4 −2 0 2 4 6 8 10
k

− log2(pk) codelength

Forward-adaptive prediction:

x

Lev.-Dur. quant.
p

∗
−

en
co

d
e

d
ec

o
d

e + x

∗

Backward-adaptive prediction:

x

z−block Lev.-Dur. p
∗

−

en
co

d
e

d
ec

o
d

e + x

z−bl.L.-D.p
∗

Disadvantage: coefficients not optimized for current block
Advantages: coefficients not encoded, longer filters possible, non-quantized coefficients

Long-term prediction and short-term prediction:

short-term

long-term

τ

τ: optimal period (similar to pitch detection)
One to five values around t −τ for prediction
Short-term and long-term prediction can be combined

Standards: FLAC (Free Lossless Audio Codec), MPEG-ALS
– many optimization details

6.2 Lossy Audio Coding

Early simple approaches: µ-law and A-law encoding (logarithmic quantization)

Approaches with linear prediction:

• DPCM (differential pulse code modulation) and ADPCM (adaptive DPCM): only quantized
prediction errors encoded

• Pure linear predictive coding: only prediction filter coefficients encoded

• CELP (code excited linear predictor): both encoded

Advanced approach: transform coding (transform of block, quantize and encode coefficients)

Problem: High-frequency artifacts at block borders
Windows and overlapping cannot be used (increase of data size)
Solution 1: filter banks (instead of blocked transform)

x H1 ↓ n

H2 ↓ n
...

...

Hn ↓ n

en
co

d
e

d
ec

o
d

e

↑ n G1 + x̂

↑ n G2 +
...

...

↑ n Gn

Hi . . . bandpass filters with different center frequencies
↓ n . . . downsampling by a factor of n
↑ n . . . upsampling (insertion of n−1 zeros after each element)
Gi reconstruction filters (Hi and Gi fulfill a “perfect reconstruction” constraint)

Used in MPEG audio level 1–2

Solution 2: modified discrete cosine transform (MDCT):

X [w, t]=
2n−1∑
s=0

x[nt + s]cos

(
π

n

(
s+ 1

2
+ n

2

)(
w + 1

2

))

n . . . hop-size 2n. . . block size w = 0, . . . ,n−1

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

0
1
2
3

First four basis functions of the MDCT for n = 128

Block of size 2n produces only n MDCT coefficients, but 50% overlap of blocks

t

MDCT

f

MDCT

f

MDCT

f

MDCT

f

n

n

· · ·
· · ·

MDCT blocks can be windowed (has to satisfy w[s]2+w[s+n]2 = 1)
Used in MPEG audio layer 3 (MP3, in addition to filter banks), MPEG-AAC (advanced audio cod-
ing), Vorbis.

Transformed data: quantized and encoded (entropy coders: Huffman, arithmetic coding)

Improvement: adaptively choosing quantization factors on a coefficient basis
⇒ psychoacoustics

1. Frequency masking:

⇒ quantize so that quantization is below masking threshold

2. Temporal masking:

Used in all state-of-the-art lossy audio codecs: MP3, AAC, Vorbis

Disadvantages of major audio codecs:
– latency (due to blocked processing⇒ unusable for interactive audio)
– bad compression performance for very low bit-rate and speech coding

(predictive techniques still better)
– heavily patent covered techniques

Solution: Opus codec
– frequency-domain techniques for higher bit-rates
– can switch to predictive coding dynamically
– uses small block sizes (less latency) (special techniques to overcome low frequency resolution)

Problem for low bit-rates: high frequencies usually dropped entirely
Solution: spectral band replication
– synthesizes higher frequency bands by extrapolating frequency content in lower bands
– harmonic signals supplemented with more harmonic frequencies in higher bands
– low-frequency noise with high-frequency noise
– may be guided by low-bit-rate side information encoded by the encoder
– result: only approximation, but sounds “nice”, improves comprehensibility of speech

The End

	1 Linear Processing
	2 Nonlinear Processing
	3 Time-Frequency Processing
	3.1 Phase Vocoder Techniques
	3.2 Peak Based Techniques
	3.3 Linear Predictive Coding
	3.4 Cepstrum

	4 Time-Domain Methods
	5 Spatial Effects
	5.1 Sound Field Methods
	5.2 Reverberation
	5.3 Convolution Methods

	6 Audio Coding
	6.1 Lossless Audio Coding
	6.2 Lossy Audio Coding

