Datenbanken

Übungsblatt 5 - SoSe 2014

1. Leite folgende Inferenzregelen aus den Amstrong-Axiomen her:

a) Dekomposition: $X \to YZ \models X \to Y, X \to Z$

b) Vereinigung: $X \to Y, X \to Z \models X \to YZ$

c) Pseudotransitivität: $X \to Y, WY \to Z \models WX \to Z$

Wertigkeit: 1 Punkt

2. Gegen welche der folgenden funktionalen Abhängigkeiten verstößt die gegebene Instanz der Relation R?

R. В С Α c1b1 a1b2a1c1a2b1 c2a2b2c2b1 c1 a3

- a) $A \to B$
- b) $A \to C$
- c) $B \to A$
- d) $B \to C$
- e) $AB \rightarrow C$
- f) $BC \to A$

Wertigkeit: 1 Punkt

3. (Prüfungsbeispiel 2013-07-02) Betrachten Sie die Relation R[A, B, C, D, E, F, G] für welche folgende funktionalen Abhängigkeiten gelten:

$$F = \{BCD \rightarrow A,$$

$$BC \rightarrow E,$$

$$C \rightarrow D,$$

$$A \rightarrow F,$$

$$F \rightarrow G,$$

$$A \rightarrow G\}$$

- a) Zeigen Sie anhand der Inferenzregeln, dass BC ein Kandidatenschlüssel von R ist.
- b) Angenommen, R befindet sich in 1NF. Geben Sie für jede der höheren Normalformen an, von welcher funktionalen Abhängigkeit diese Normalform verletzt wird.

c) Zerlegen Sie R in die Boyce-Codd Normalform (BCNF) unter Verwendung des Dekompositionsalgorithms. Durchlaufen Sie dabei die funktionalen Abhängigkeiten in der Reihenfolge, in der Sie in der Angabe geben sind.

Wertigkeit: 1 Punkt/Unterpunkt

4. $Pr\ddot{u}fungsbeispiel\ 2013-09-23$ Betrachten Sie die Relation R[A,B,C,D,E] für welche folgende funktionale Abhängigkeiten gelten:

$$F = \{AB \to C, \\ B \to D, \\ DE \to C\}$$

- a) Bestimmen Sie alle Kandidatenschlüssel von R.
- b) Welches ist die höchste Normalform (1NF, 2NF, 3NF, BCNF) in der sich R befindet? Geben Sie zu jeder verletzten Normalform an, durch welche funktionalen Abhängigkeiten sie verletzt wird.
- c) Verwenden Sie den Synthesealgorithmus um R in 3NF zu zerlegen. Bitte geben Sie die einzelnen Schritte an.

Wertigkeit: 1 Punkt/Unterpunkt

Weitere, optionale Übungen

- 6. Geben Sie für folgende Attributmengen an, ob diese Superschlüssel für folgendes Relationenschema sind: R(A,B,C,D,E) mit den funktionalen Abhängigkeiten $F = \{AB \to C, C \to D, D \to A\}$.
 - a) AB
 - b) ABC
 - c) ABDE
 - d) ACE
 - e) CDE
- 7. Gegeben sei eine Relation R mit den folgenden Attributen: M(akler), $B(\ddot{u}ro)$ eines Maklers), I(nvestor), A(ktie), Q(uantität einer Aktie, die ein Investor) besitzt) und <math>D(ividende, die für eine Aktie ausgeschüttet wird).

Es existieren folgende funktionale Abhängigkeiten:

$$F = \{A \to D, I \to M, IA \to Q, M \to B\}$$

- a) Welche Anomalien können bei der Manipulation von Tupeln in einer Instanz von R[M, B, I, A, Q, D] auftreten?
- b) Ist IA ein Kandidatenschlüssel für R?. Begründen Sie Ihre Antwort.
- c) Wieviele Kandidatenschlüssel gibt es für dieses Schema?
- d) In welcher Normalform befindet sich R?
- e) R wird zerlegt in $Z = \{R_1, R_2, R_3, R_4\}$ mit $R_1[A, D], R_2[I, M], R_3[I, A, Q]$ und $R_4[M, B]$. Ist diese Zerlegung verlustlos bezüglich F? Was ist nach der Zerlegung mit den Anomalien aus Teilaufgabe (a) geschehen?

- 8. Gegeben sei das Relationenschema R[A,B,C,D,E,F] mit der Menge der funktionalen Abhängigkeiten $F_R = \{A \to BD, AB \to E, B \to EF, C \to AB\}$. Bestimmen Sie alle Kandidatenschlüssel von R. In welcher höchsten Normalform befindet sich R? Falls sich R nicht in 3NF oder höher befindet, zerlegen Sie R in 3NF.
- 9. Gegeben sei das Relationenschema S[A,B,C,D,E,F] mit der Menge der funktionalen Abhängigkeiten $F_S = \{A \to D, B \to AF, CF \to A, D \to B\}$. Bestimmen Sie alle Kandidatenschlüssel von S. In welcher höchsten Normalform befindet sich S? Falls sich S nicht in 3NF oder höher befindet, zerlegen Sie S in 3NF.
- 10. (*Prüfungsbeispiel 2013-07-02*) Bitte kreuzen Sie an:

a)	0 0	$S_1[A,B], R_2[B,D,E], R_3[C,D]$ der Relation $R[A,B,C,D,E]$ ionalen Abhängigkeiten $F=\{B\to A,B\to DE,C\to D\}$
	\square richtig	\square falsch
b)	Die Zerlegung $R_1[A, B, C]$, $R_2[C, D, E]$ der Relation $R[A, B, C, D, E]$ mit den funktionalen Abhängigkeiten $F = \{A \rightarrow BC, C \rightarrow DE, A \rightarrow D\}$ ist abhängikeitsbewahrend.	
	\square richtig	\square falsch
c)	$FA \to D$ ist in der Hülle von $F = \{A \to C, E \to D, FC \to E\}.$	
	\square richtig	\square falsch
d)	Jede abhängigkeitsbewahrende Zerlegung ist auch verlustlose.	
	\square richtig	\square falsch
e)	Jede verlustlose Zerlegung ist auch abhängigkeitsbewahrend.	
	□ richtig	\square falsch

- 11. Welche der folgenden Aussagen sind wahr, welche sind falsch?
 - a) Falls $\alpha \to \gamma$ in Schema R gilt, dann gilt auch $\alpha\beta \to \alpha\beta\gamma$ $(\alpha, \beta, \gamma \subseteq R)$.
 - b) Falls β ein Superschlüssel ist, dann existiert immer eine echte Untermenge $\alpha \subset \beta$ für die gilt: $\alpha \rightarrow R$ $(\alpha, \beta \subseteq R)$.
 - c) Für ein Relationenschema R gilt immer entweder $\alpha \to \beta$ oder $\beta \to \alpha$ aber nie beides $(\alpha, \beta \subseteq R)$.
 - d) Jedes Schema in 2NF ist auch in 3NF.
 - e) Jedes Schema in 3NF ist auch in 2NF.
 - f) Ein Schema kann immer verlustlos in 3NF und BCNF zerlegt werden.
 - g) Ein Schema kann immer abhängigkeitsbewahrend in 3NF und BCNF zerlegt werden.