Approximate Joins for Data-Centric XML

 $\mathsf{Nikolaus\; Augsten^1}\quad$ Michael Böhlen 1 \quad Curtis Dyreson 2 \quad Johann Gamper 1

 QQ

¹Free University of Bozen-Bolzano Bolzano, Italy {augsten,boehlen,gamper}@inf.unibz.it

> ²Utah State University Logan, UT, U.S.A. curtis.dyreson@usu.edu

April 10, 2008 ICDE, Cancún, Mexico

Outline

1 [Motivation](#page-2-0)

2 Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- \bullet [Windowed](#page-12-0) pq-Grams
- [Tree Sorting](#page-24-0)
- **•** [Forming Bases](#page-36-0)
- 3 [Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram
- 4 [Experiments](#page-93-0)
- **5** [Related Work](#page-99-0)
- **6** [Conclusion and Future Work](#page-101-0)

Approximate Join on Music CDs

Motivation

Query: Give me all album pairs that represent the same music CDs.

4 **ED**

 299

Approximate Join on Music CDs

Motivation

Query: Give me all album pairs that represent the same music CDs.

How similar are two XML items?

How Similar Are these XMLs?

Standard solution $O(n^3)$ **:** tree edit distance Minimum number of node edit operations (insert, delete, rename) that transforms one ordered tree into the other.

 Ω

How Similar Are these XMLs?

- **Standard solution** $O(n^3)$ **:** tree edit distance Minimum number of **node edit operations** (insert, delete, rename) that transforms one ordered tree into the other.
- Problem: permuted subtrees are deleted/re-inserted node by node \bullet

 Ω

Ordered vs. Unordered Trees

Ordered Trees sibling order matters

 298

 \Box

Ordered vs. Unordered Trees

Ordered Trees sibling order matters a c e d b \neq a $\mathbf b$ d e ignore order Unordered Trees $=$ data-centric XML sibling order ignored a b $\frac{a \oplus}{c \oplus d} =$ a b ϵ @ \mathbb{d}

 \Box

Ordered vs. Unordered Trees

Edit distance between unordered trees: NP-complete \bullet \rightarrow all sibling permutations must be considered!

 Ω

Problem Definition

Find an effective distance for the approximate matching of hierarchical data represented as unordered labeled trees that is efficient for approximate joins.

Find an effective distance for the approximate matching of hierarchical data represented as unordered labeled trees that is efficient for approximate joins.

Naive approaches that fail:

- unordered tree edit distance: NP-complete
- allow subtree move: NP-hard
- compute minimum distance between all permutations: $O(n!)$
- sort by label and use ordered tree edit distance: error $O(n)$

 Ω

Outline

[Motivation](#page-2-0)

2 Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- \bullet [Windowed](#page-12-0) pq-Grams
- [Tree Sorting](#page-24-0)
- **•** [Forming Bases](#page-36-0)

[Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram

[Experiments](#page-93-0)

- [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams Our Solution: Windowed pq-Grams

• Windowed pq-Gram: small subtree with stem and base

 298

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams Our Solution: Windowed pq-Grams

- Windowed pq-Gram: small subtree with stem and base
- \bullet Key Idea: split unordered tree into set of windowed pq -grams that is

• • • • •

base $q = 3$ stem $p = 2$

- not sensitive to the sibling order
- sensitive to any other change in the tree
- Intuition: similar unordered trees have similar windowed pq-grams \bullet

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams Our Solution: Windowed pq-Grams

- Windowed pq-Gram: small subtree with stem and base
- \bullet Key Idea: split unordered tree into set of windowed pq -grams that is

• • • • •

base $q = 3$ stem $p = 2$

- not sensitive to the sibling order
- sensitive to any other change in the tree
- **Intuition:** similar unordered trees have similar windowed pq-grams
- Systematic computation of windowed pq -grams
	- 1. sort the children of each node by their label (works OK for pq -grams)
	- 2. simulate permutations with a window
	- 3. split tree into windowed pq -grams

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams

Implementation of Windowed pq-Grams

\bullet Set of windowed pq -grams:

Nikolaus Augsten (Bolzano, Italy) [Approximate Joins for Data-Centric XML](#page-0-0) ICDE 2008 – Cancún, Mexico 9 / 33

 298

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams

Implementation of Windowed pq-Grams

• Set of windowed pq -grams: a b c d e −→ * a b c * a b * * a c * * a c b * a * b * a $* c$ a b * * a c d e a c d * a c e * a c e d a c * d a c * e c d * * c e * * • Hashing: map pq -gram to integer:

Note: labels may be strings of arbitrary length!

 Ω

Windowed pa-Grams for Data-Centric XML Windowed pa-Grams

Implementation of Windowed pq-Grams

 \bullet Set of windowed pq -grams: a b c d e −→ * a b c * a b * * a c * * a c b * a * b * a $* c$ a b * * a c d e a c d * a c e * a c e d a c * d a c * e c d * * c e * *

• Hashing: map pq-gram to integer:

$$
\begin{array}{c}\n\ast \\
\downarrow \\
a \\
\downarrow \\
b\n\end{array}\n\quad\n\text{serialize } (\ast, a, b, c) \quad\n\begin{array}{c}\n\text{(shorthand)} \\
\downarrow \\
b\n\end{array}\n\quad\n\text{Table 1: } h(l)
$$
\n
$$
\begin{array}{c}\n\downarrow \\
\downarrow \\
b\n\end{array}\n\quad\n\text{length: } h(l)
$$
\n
$$
\begin{array}{c}\n\downarrow \\
b\n\end{array}\n\quad\n\text{length: } h(l)
$$
\n
$$
\begin{array}{c}\n\downarrow \\
b\n\end{array}\n\quad\n\text{length: } h(l)
$$

Note: labels may be strings of arbitrary length!

 \bullet pq-Gram index: bag of hashed pq-grams

 $I(T) = \{0973, 0970, 0930, 0937, 0907, 0903, 9700, 9316,$ 9310, 9360, 9361, 9301, 9306, 3100, 3600}

Tree is represented by a bag of integers!

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \oplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \uplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

Pseudo-metric properties hold: \bullet

 \checkmark self-identity: $x = y \Rightarrow$ dist^{pq} $(x, y) = 0$

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \uplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

• Pseudo-metric properties hold:

 \checkmark self-identity: $x = y \notin \check{} \Rightarrow$ dist $P^q(x, y) = 0$

 QQ

 \bullet Different trees may be at distance zero:

$$
\begin{matrix}b&&b\\ b&&&b\\ b&&&b\\ b&b&&b\end{matrix}
$$

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \uplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

• Pseudo-metric properties hold:

 \checkmark self-identity: $x = y \notin \checkmark$ dist^{pq} $(x, y) = 0$ \checkmark symmetry: dist^{pq}(x, y) = dist^{pq}(y, x)

 Ω

Different trees may be at distance zero: \bullet

$$
\begin{matrix}b&&b\\ b&&b^{\prime}\\ b&&b^{\prime}\\ b&\bullet\\ b&\bullet\end{matrix}
$$

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \uplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

• Pseudo-metric properties hold:

 \checkmark self-identity: $x = y \notin \checkmark$ dist^{pq} $(x, y) = 0$ ✓ symmetry: dist^{pq}(x, y) = dist^{pq}(y, x)

 Ω

 \checkmark triangle inequality: dist^{pq}(x, z) \leq dist^{pq}(x, y) + dist^{pq}(y, z)

Different trees may be at distance zero: \bullet

$$
\begin{array}{ccccc}\nb & & & b \\
b & & & b \\
b & & & b\n\end{array}
$$

The windowed pq-gram distance between two trees, T and T':

$$
\mathsf{dist}^{pq}(\mathbf{T},\mathbf{T}') = |\mathcal{I}(\mathbf{T}) \uplus \mathcal{I}(\mathbf{T}')| - 2|\mathcal{I}(\mathbf{T}) \cap \mathcal{I}(\mathbf{T}')|
$$

Pseudo-metric properties hold: \bullet

> \checkmark self-identity: $x = y \notin \checkmark$ dist^{pq} $(x, y) = 0$ \checkmark symmetry: dist^{pq}(x, y) = dist^{pq}(y, x)

つひひ

 \checkmark triangle inequality: dist^{pq}(x, z) \leq dist^{pq}(x, y) + dist^{pq}(y, z)

• Different trees may be at distance zero:

$$
\begin{matrix}b&&b\\ b&&&b\\ b&&&b\\ b&b&&&b\end{matrix}
$$

• **Runtime** for the distance computation is $O(n \log n)$.

Outline

[Motivation](#page-2-0)

2 Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- [Windowed](#page-12-0) pq-Grams
- [Tree Sorting](#page-24-0)
- **[Forming Bases](#page-36-0)**
- [Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram
- **[Experiments](#page-93-0)**
- [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

Sorting the Tree?

Idea:

- 1. sort the children of each node by their label
- 2. apply an ordered tree distance

 \Box

 298

Sorting the Tree?

Idea:

- 1. sort the children of each node by their label
- 2. apply an ordered tree distance

- ✘ Edit distance: tree sorting does not work
- $\sqrt{\ }$ Windowed pq-Grams: tree sorting works OK

✘ Edit Distance: Tree Sorting Does Not Work

1. Non-unique sorting:

 298

✘ Edit Distance: Tree Sorting Does Not Work

1. Non-unique sorting:

✘ Edit Distance: Tree Sorting Does Not Work

Windowed pa-Grams for Data-Centric XML Tree Sorting

1. **Non-unique sorting**: edit distance $O(n)$ for identical trees

✘ Edit Distance: Tree Sorting Does Not Work

2. Node renaming:

✘ Edit Distance: Tree Sorting Does Not Work

2. Node renaming:

✘ Edit Distance: Tree Sorting Does Not Work

2. Node renaming:

✘ Edit Distance: Tree Sorting Does Not Work

Windowed pa-Grams for Data-Centric XML Tree Sorting

2. Node renaming: edit distance depends on node label

Windowed pq-Grams: Tree Sorting Works OK

Theorem (Local Effect of Node Reordering)

If k children of a node are reordered, i.e., their subtrees are moved, only $O(k)$ windowed pq-grams change.

• Proof (idea):

- pq-grams consist of a stem and a base
- stems are invariant to the sibling order
- \bullet bases: only the $O(k)$ pq-grams with the reordered nodes in the bases change

 Ω

Vindowed pq-Grams: Tree Sorting Works OK

Theorem (Local Effect of Node Reordering)

If k children of a node are reordered, i.e., their subtrees are moved, only $O(k)$ windowed pq-grams change.

• Proof (idea):

- pq-grams consist of a stem and a base
- stems are invariant to the sibling order
- \bullet bases: only the $O(k)$ pq-grams with the reordered nodes in the bases change
- **Non-unique sortings** are equivalent: distance is 0 for identical trees
- Node renaming is independent of the node label

Outline

[Motivation](#page-2-0)

2 Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- [Windowed](#page-12-0) pq-Grams
- **•** [Tree Sorting](#page-24-0)
- **•** [Forming Bases](#page-36-0)
- [Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram
- **[Experiments](#page-93-0)**
- [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

How To Form Bases?

- \bullet Goal for windowed pq -grams:
	- not sensitive to the sibling order
	- sensitive to any other change in the tree

How To Form Bases?

- \bullet Goal for windowed pq-grams:
	- not sensitive to the sibling order
	- sensitive to any other change in the tree
- **Stems:** ignore sibling order a
八 b c d e −→ * a a b a c c d c e

How To Form Bases?

- \bullet Goal for windowed pq -grams:
	- not sensitive to the sibling order
	- sensitive to any other change in the tree
- **Stems:** ignore sibling order a h d e −→ * a a b a c c d c e
- Bases: do not ignore sibling order! \bullet

Requirements for Bases

Requirements for bases: \bullet

- **o** detection of node moves
- robustness to different sortings
- **•** balanced node weight

Requirements for Bases

• Requirements for bases:

- **a** detection of node moves
- robustness to different sortings
- **•** balanced node weight

Our solution:

- windows: simulate all permutations within a window
- wrapping: wrap windows that extend beyond the right border
- **dummies**: extend small sibling sets with dummy nodes

Windowed *pg*-Grams for Data-Centric XML Forming Bases Solution: Windowed pq-Gram Bases

Algorithm 1: Form bases from a sorted sibling sequence

Example: stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{c}\n a \\
b \\
c \\
d\n \end{array}
$$

Algorithm 2: Form bases from a sorted sibling sequence

1 if sibling sequence \langle window then extend with dummy nodes;

Example: stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{c}\n a \\
b \\
c \\
d \\
e\n \end{array}
$$

Algorithm 3: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;

Example: stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{c}\n a \\
b \\
c \\
d \mid e \mid * \n\end{array}
$$

Algorithm 4: Form bases from a sorted sibling sequence

- if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat
- 4 form bases in window: all q-permutations that contain start node;

- until processed all window positions
	- Example: stem, sorted sibling sequence, window $w = 3$

Algorithm 5: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat
- 4 form bases in window: all q-permutations that contain start node;

- until processed all window positions
	- **Example:** stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{ccc}\n a & a & a \\
b & c & \longrightarrow & c & c \\
\hline\n \frac{d}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} & \frac{1}{c} \\
\hline\n \end{array}
$$

Algorithm 6: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat
- 4 form bases in window: all q-permutations that contain start node;
- 5 shift window to the right by one node;
- until processed all window positions
	- **Example:** stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{ccc}\n a & a & a \\
b & c & \longrightarrow & c & c \\
d & e & * & d & e & d & *\n\end{array}
$$

Algorithm 7: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat
- 4 form bases in window: all q -permutations that contain start node;
- 5 shift window to the right by one node;
- 6 if window extends the right border then wrap window;
- until processed all window positions
	- **Example:** stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{ccc}\n a & a & a \\
b & c & \xrightarrow{\text{c}} & c \\
d \mid e \mid * & & d \mid e \mid * \\
\end{array}
$$

Algorithm 8: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat
- 4 form bases in window: all q -permutations that contain start node;
- 5 shift window to the right by one node;
- 6 if window extends the right border then wrap window;
- until processed all window positions
	- **Example:** stem, sorted sibling sequence, window $w = 3$ \bullet

$$
\begin{array}{c}\n a \\
\bigwedge^2 \\
b \\
d \\
e \\
\end{array}
$$

$$
\begin{array}{cccccccc}\n & a & a & a & a \\
& 1 & 1 & 1 & 1 \\
& c & c & c & c \\
& \wedge & \wedge & \wedge & \wedge \\
& d & e & d & * & e & * & e\n\end{array}
$$

Algorithm 9: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat

a

b c

 $\frac{d}{d}$ e $\left| \cdot \right|$

- 4 form bases in window: all q -permutations that contain start node;
- 5 shift window to the right by one node;
- 6 if window extends the right border then wrap window;
- until processed all window positions
	- Example: stem, sorted sibling sequence, window $w = 3$

$$
\begin{array}{ccccccccccc}\n & a & a & a & a & a & a & a \\
& & 1 & 1 & 1 & 1 & 1 & 1 \\
& & c & c & c & c & c & c \\
& & & \wedge & \wedge & \wedge & \wedge & \wedge & \wedge \\
& & d & e & d & * & e & * & e & d & * & d & * & e\n\end{array}
$$

Algorithm 10: Form bases from a sorted sibling sequence

- 1 if sibling sequence \langle window then extend with dummy nodes;
- 2 initialize window: start with leftmost node;
- 3 repeat

a

b c

 $\mathsf{d} \, |\mathsf{e}|$ \ast

- 4 form bases in window: all q -permutations that contain start node;
- 5 shift window to the right by one node;
- 6 if window extends the right border then wrap window;
- until processed all window positions
	- Example: stem, sorted sibling sequence, window $w = 3$

−→ a c d e a c d * a c e * a c e d a c * d a c * e

Theorem (Optimal Windowed pq-Grams)

For trees with fanout f, windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ $\frac{+1}{2}$ have the following properties:

Theorem (Optimal Windowed pq-Grams)

For trees with fanout f , windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ $\frac{+1}{2}$ have the following properties:

1. Detection of node moves:

base recall $\rho = 1$ (all sibling pairs are encoded) base precision $\pi = 1$ (each pair is encoded only once)

Theorem (Optimal Windowed pq-Grams)

For trees with fanout f , windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ $\frac{+1}{2}$ have the following properties:

1. Detection of node moves:

base recall $\rho = 1$ (all sibling pairs are encoded) base precision $\pi = 1$ (each pair is encoded only once)

2. Robustness to different sortings: (k edit operations) base error $\epsilon \leq \frac{2k}{\epsilon}$ f

Theorem (Optimal Windowed pq-Grams)

For trees with fanout f , windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ $\frac{+1}{2}$ have the following properties:

1. Detection of node moves:

base recall $\rho = 1$ (all sibling pairs are encoded) base precision $\pi = 1$ (each pair is encoded only once)

- 2. Robustness to different sortings: (k edit operations) base error $\epsilon \leq \frac{2k}{\epsilon}$ f
- 3. Balanced node weight:

Each non-root node appears in exactly $2w - 2$ bases.

Illustration: Detection of Node Moves

• Single Node: each node forms a base of size $q = 1$

 $2Q$

• Single Node: each node forms a base of size $q = 1$

• Single Node: each node forms a base of size $q = 1$

• Single Node: each node forms a base of size $q = 1$

Nikolaus Augsten (Bolzano, Italy) [Approximate Joins for Data-Centric XML](#page-0-0) ICDE 2008 – Cancún, Mexico 21 / 33

- Single Node: each node forms a base of size $q = 1$
- Window: $q > 2$ nodes of a window form a base

- Single Node: each node forms a base of size $q = 1$
- Window: $q > 2$ nodes of a window form a base

Windowed pq-grams detect node moves.

Consecutive siblings form a base (no permutation)

 QQQ

Consecutive siblings form a base (no permutation)

 $2Q$

Consecutive siblings form a base (no permutation)

Consecutive siblings form a base (no permutation)

- **Consecutive siblings** form a base (no permutation)
- **Window:** all sibling permutations within the window form bases

- **Consecutive siblings** form a base (no permutation)
- **Window:** all sibling permutations within the window form bases

 $2Q$

Windowed pa-Grams for Data-Centric XML Forming Bases Illustration: Balancing the Node Weight

• Permutations: all permutations of size q form a base

 QQQ

Windowed pa-Grams for Data-Centric XML Forming Bases Illustration: Balancing the Node Weight

• Permutations: all permutations of size q form a base

 Ω

Goal: Same number of bases change for both renames.

Windowed *pg*-Grams for Data-Centric XML Forming Bases Illustration: Balancing the Node Weight

• Permutations: all permutations of size q form a base

Windowed *pg*-Grams for Data-Centric XML Forming Bases Illustration: Balancing the Node Weight

• Permutations: all permutations of size q form a base

Windowed *pg*-Grams for Data-Centric XML Forming Bases **Illustration: Balancing the Node Weight**

- **Permutations**: all permutations of size q form a base
- Window: only permutations within window form a base

 Ω

Windowed *pg*-Grams for Data-Centric XML Forming Bases Illustration: Balancing the Node Weight

- **Permutations**: all permutations of size q form a base
- Window: only permutations within window form a base

Windowed pq-grams: Node weight is independent of sibling number.

Outline

[Motivation](#page-2-0)

Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- [Windowed](#page-12-0) pq-Grams
- **•** [Tree Sorting](#page-24-0)
- **[Forming Bases](#page-36-0)**

3 [Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram

- **[Experiments](#page-93-0)**
- [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

Approximate Join

Nikolaus Augsten (Bolzano, Italy) [Approximate Joins for Data-Centric XML](#page-0-0) ICDE 2008 – Cancún, Mexico 25 / 33

 \leftarrow

 298

э

Approximate Join

• Simple approach: distance join

1. compute distance between all pairs of trees

 \Box

 $2Q$

Approximate Join

• Simple approach: distance join

- 1. compute distance between all pairs of trees
- 2. return document pairs within threshold

 $2Q$

Approximate Join

• Simple approach: distance join

- 1. compute distance between all pairs of trees
- 2. return document pairs within threshold
- Very $expensive: N^2$ distance computations!

 $2Q$

Usual Join Optimization Does not Apply

Distance join: expensive \bullet

- nested loop join: evaluate distance function between every input pair
- **Equality join:** efficient
	- implementation as sort-merge or hash join

Usual Join Optimization Does not Apply

Distance join: expensive \bullet

- nested loop join: evaluate distance function between every input pair
- **Equality join:** efficient
	- implementation as sort-merge or hash join

• Sort-merge and hash join:

- first step: treat each join attribute in isolation (sort/hash)
- second step: evaluate equality function
- Sort-merge and hash not applicable to distance join:
	- there is **no sorting** that groups similar trees
	- there is **no hash function** that partitions similar trees into buckets

Usual Join Optimization Does not Apply

Distance join: expensive \bullet

- nested loop join: evaluate distance function between every input pair
- **Equality join:** efficient
	- implementation as sort-merge or hash join

• Sort-merge and hash join:

- first step: treat each join attribute in isolation (sort/hash)
- second step: evaluate equality function
- Sort-merge and hash not applicable to distance join:
	- there is **no sorting** that groups similar trees
	- there is **no hash function** that partitions similar trees into buckets

• Solution: reduce distance join to equality join on pq -grams

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- ${1,7}_a$ ${1,7}_d$ ${1,0}_b$ ${5,5}_e$ ${4, 6}$ _c ${0, 8}$ _f

Reducing a Distance Join to an Equality Join

Distance join between trees: N^2 intersections between integer bags $\{1, 7\}$ a $\leftarrow \{1, 7\}$ d $\{1, 0\}_b \quad \bigvee \{5, 5\}_e$ $\{4, 6\}_c$ $\{0, 8\}_f$ $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$

Reducing a Distance Join to an Equality Join

Distance join between trees: N^2 intersections between integer bags $\{1, 7\}$ a $\sqrt{1, 7}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$
- Optimized pq-gram join: empty intersections are never computed!

Reducing a Distance Join to an Equality Join

Distance join between trees: N^2 intersections between integer bags $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

1. union

 $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1, 7\}$ a $\{\! =\! \{1, 7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$
- Optimized pq-gram join: empty intersections are never computed!
	- 1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$ 2. sort

$$
\begin{array}{ccc}\n0_b & 0_f \\
1_a & 1_d \\
1_b & 5_e \\
4_c & 5_e \\
6_c & 7_d \\
7_a & 8_f\n\end{array}
$$

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1, 7\}$ a $\{\! =\! \{1, 7\}$ d $\{1,0\}$ _b \leftarrow $\{5,5\}$ _e $\{4, 6\}$ \leq $\{0, 8\}$ $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

- 1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$ 2. sort
- 3. merge-join

 $7₂$ 8 ϵ

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$ 2. sort 3. merge-join 0_b 0_f 1_a 1_d 1_b 5_e 4_c 5_e $6c \t7d$ $|b \cap f|$ |

 QQQ

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$ 2. sort 3. merge-join 0_b \longrightarrow 0_f

$$
\begin{array}{ccc}\n1_a \quad -1_d \\
1_b \quad 5_e \\
4_c \quad 5_e\n\end{array}\n\quad\n\begin{array}{ccc}\n|b \cap f| & | \\
|a \cap d| & | \\
\end{array}
$$

 $\begin{matrix} 6_c & 7_d \\ 7_c & 8_f \end{matrix}$ 8_f

 QQQ

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

- 1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$
- 2. sort
- 3. merge-join

$$
0b - 0f\n1a - 1d\n1b - 5e\n4c 5e\n6c 7d |b \cap d| |
\n7_a 8_f
$$

Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
	- $\{1,7\}$ a \sum $\{1,7\}$ d $\{1,0\}$ b \Longleftrightarrow {5,5} $_e$ $\{4, 6\}$ _c \leq $\{0, 8\}$ _f $|a \cap d| = 2$ $|a \cap e| = 0$ $|a \cap f| = 0$ $|b \cap d| = 1$ $|b \cap e| = 0$ $|b \cap f| = 1$ $|c \cap d| = 0$ $|c \cap e| = 0$ $|c \cap f| = 0$

• Optimized pq-gram join: empty intersections are never computed!

- 1. union $\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\}$ $\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}$
- 2. sort
- 3. merge-join

 QQQ

Outline

[Motivation](#page-2-0)

Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- [Windowed](#page-12-0) pq-Grams
- **•** [Tree Sorting](#page-24-0)
- **[Forming Bases](#page-36-0)**
- [Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram
- 4 [Experiments](#page-93-0)
- [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

Experiments

Effectiveness of the Windowed pq-Gram Join

 298

Experiments Effectiveness of the Windowed pq-Gram Join

Experiment: match DBLP articles

- a add noise to articles (missing elements and spelling mistakes)
- approximate join between original and noisy data
- measure precision and recall for different thresholds

Windowed pq-grams are effective for data-centric XML

Experiments Effectiveness of the Windowed pq-Gram Join

Experiment: match DBLP articles

- a add noise to articles (missing elements and spelling mistakes)
- approximate join between original and noisy data
- measure precision and recall for different thresholds

Datasets:

- **· DBLP:** articles
	- depth 1.9, 15 nodes (max 1494 nodes)
- SwissProt: protein descriptions depth 3.5, 104 nodes (max 2640 nodes)
- **Treebank:** tagged English sentences depth 6.9 (max depth 30), 43 nodes

Windowed pq-grams are effective for data-centric XML

 Ω

Experiments

Efficiency of the Optimized pq-Gram Join

 298

Experiments

Efficiency of the Optimized pq-Gram Join

Optimized pq-gram join: very efficient

• compute nested-loop join between trees

- \bullet compute optimized pq -gram join between trees
- **•** measure wallclock time

Outline

[Motivation](#page-2-0)

Windowed pq[-Grams for Data-Centric XML](#page-11-0)

- [Windowed](#page-12-0) pq-Grams
- **•** [Tree Sorting](#page-24-0)
- **[Forming Bases](#page-36-0)**

[Efficient Approximate Joins with Windowed](#page-74-0) pq-Gram

[Experiments](#page-93-0)

- **5** [Related Work](#page-99-0)
- 6 [Conclusion and Future Work](#page-101-0)

Distances between Unordered Trees

Edit Distances between Unordered Trees

- [\[Zhang et al., 1992\]](#page-104-0): proof for NP-completeness
- [\[Kailing et al., 2004\]](#page-103-0): lower bound for a restricted edit distance
- [\[Chawathe and Garcia-Molina, 1997\]](#page-103-1): $O(n^3)$ heuristics
- \bullet Our solution: $O(n \log n)$ approximation

Approximate Join

• [\[Gravano et al., 2001\]](#page-103-2): efficient approximate join for strings

Conclusion and Future Work Conclusion and Future Work

Windowed pq-grams for unordered trees:

- \bullet $O(n \log n)$ approximation of NP-complete edit distance
- Key problem: all permutations must be considered
- **Our approach:** sort trees and simulate permutations with window
- **Sorting:** works for pq-grams, but not for edit distance
- Window technique guarantees core properties
	- **a** detection of node moves
	- robustness to different sortings
	- **•** balanced node weight
- **Efficient approximate join:** reduces distance join to equality join \bullet

Windowed pq-grams for unordered trees:

- \odot $O(n \log n)$ approximation of NP-complete edit distance
- Key problem: all permutations must be considered
- **Our approach:** sort trees and simulate permutations with window
- **Sorting:** works for pq-grams, but not for edit distance
- Window technique guarantees core properties
	- **o** detection of node moves
	- robustness to different sortings
	- **•** balanced node weight
- **Efficient approximate join**: reduces distance join to equality join

Future work:

- \bullet incremental updates of the windowed pq-gram index
- include approximate string matching into XML distance

Sudarshan S. Chawathe and Hector Garcia-Molina.

Meaningful change detection in structured data.

In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 26–37, Tucson, Arizona, United States, May 1997. ACM Press.

Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in a database (almost) for free. In Proceedings of the International Conference on Very Large Databases (VLDB), pages 491–500, Roma, Italy, September 2001. Morgan Kaufmann Publishers Inc.

Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, and Thomas Seidl. Efficient similarity search for hierarchical data in large databases. In Proceedings of the International Conference on Extending Database Technology (EDBT), volume 2992 of Lecture Notes in Computer

Conclusion and Future Work

昂

Science, pages 676–693, Heraklion, Crete, Greece, March 2004. Springer.

Kaizhong Zhang, Richard Statman, and Dennis Shasha. On the editing distance between unordered labeled trees. Information Processing Letters, 42(3):133–139, 1992.